Scientists Use Supercomputers to Study Reliable Fusion Reactor Design, Operation

February 22, 2021

Feb. 22, 2021 — Nuclear fusion, the same kind of energy that fuels stars, could one day power our world with abundant, safe, and carbon-free energy. Aided by supercomputers Summit at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) and Theta at DOE’s Argonne National Laboratory (ANL), a team of scientists strives toward making fusion energy a reality.

Fusion reactions involve two or more atomic nuclei combining to form different nuclei and particles, converting some of the atomic mass into energy in the process. Scientists are working toward building a nuclear fusion reactor that could efficiently produce heat that would then be used to generate electricity. However, confining plasma reactions that occur at temperatures hotter than the sun is very difficult, and the engineers who design these massive machines can’t afford mistakes.

To ensure the success of future fusion devices—such as ITER, which is being built in southern France—scientists can take data from experiments performed on smaller fusion devices and combine them with massive computer simulations to understand the requirements of new machines. ITER will be the world’s largest tokamak, or device that uses magnetic fields to confine plasma particles in the shape of a donut inside, and will produce 500 megawatts (MW) of fusion power from only 50 MW of input heating power.

One of the most important requirements for fusion reactors is the tokamak’s divertor, a material structure engineered to remove exhaust heat from the reactor’s vacuum vessel. The heat-load width of the divertor is the width along the reactor’s inner walls that will sustain repeated hot exhaust particles coming in contact with it.

A team led by C.S. Chang at Princeton Plasma Physics Laboratory (PPPL) has used the Oak Ridge Leadership Computing Facility’s (OLCF’s) 200-petaflop Summit and Argonne Leadership Computing Facility’s (ALCF’s) 11.7-petaflop Theta supercomputers, together with a supervised machine learning program called Eureqa, to find a new extrapolation formula from existing tokamak data to future ITER based on simulations from their XGC computational code for modeling tokamak plasmas. The team then completed new simulations that confirm their previous ones, which showed that at full power, ITER’s divertor heat-load width would be more than six times wider than was expected in the current trend of tokamaks. The results were published in Physics of Plasmas.

Using Eureqa, the team found hidden parameters that provided a new formula that not only fits the drastic increase predicted for ITER’s heat-load width at full power but also produced the same results as previous experimental and simulation data for existing tokamaks. Among the devices newly included in the study were the Alcator C-Mod, a tokamak at the Massachusetts Institute of Technology (MIT) that holds the record for plasma pressure in a magnetically confined fusion device, and the world’s largest existing tokamak, the JET (Joint European Torus) in the United Kingdom.

“If this formula is validated experimentally, this will be huge for the fusion community and for ensuring that ITER’s divertor can accommodate the heat exhaust from the plasma without too much complication,” Chang said.

ITER deviates from the trend

The Chang team’s work studying ITER’s divertor plates began in 2017 when the group reproduced experimental divertor heat-load width results from three US fusion devices on the OLCF’s former Titan supercomputer: General Atomics’ DIII-D toroidal magnetic fusion device, which has an aspect ratio similar to ITER; MIT’s Alcator C-Mod; and the National Spherical Torus Experiment, a compact low-aspect-ratio spherical tokamak at PPPL. The presence of steady “blobby”-shaped turbulence at the edge of the plasma in these tokamaks did not play a significant role in widening the divertor heat-load width.

At left, ions being lost from the confined plasma and following the magnetic field lines to the material diverter plates in the gyrokinetic simulation code XGC1. At right, an XGC1 simulation of edge turbulence in DIII-D plasma, showing the plasma turbulence changing the eddy structure to isolated blobs (represented by red color) in the vicinity of the magnetic separatrix (black line). Image Credit: Kwan-Liu Ma’s research group, University of California Davis; David Pugmire and Adam Malin, ORNL

The researchers then set out to prove that their XGC code, which simulates particle movements and electromagnetic fields in plasma, could predict the heat-load width on the full-power ITER’s divertor surface. The presence of dynamic edge turbulence—different from the steady blobby-shaped turbulence present in the current tokamak edge—could significantly widen the distribution of the exhaust heat, they realized. If ITER were to follow the current trend of heat-load widths in present-day fusion devices, its heat-load width would be less than a few centimeters—a dangerously narrow width, even for divertor plates made of tungsten, which boasts the highest melting point of all pure metals.

The team’s simulations on Titan in 2017 revealed an unusual jump in the trend—the full-power ITER showed a heat-load width more than six times wider than what the existing tokamaks implied. But the extraordinary finding required more investigation. How could the full-power ITER’s heat-load width deviate so significantly from existing tokamaks?

The interior of MIT’s Alcator C-Mod tokamak. Image Credit: Robert Mumgaard, MIT

Scientists operating the C-Mod tokamak at MIT cranked the device’s magnetic field up to ITER value for the strength of the poloidal magnetic field, which runs top to bottom to confine the donut-shaped plasma inside the reaction chamber. The other field used in tokamak reactors, the toroidal magnetic field, runs around the circumference of the donut. Combined, these two magnetic fields confine the plasma, as if winding a tight string around a donut, creating looping motions of ions along the combined magnetic field lines called gyromotions that researchers believe might smooth out turbulence in the plasma.

Scientists at MIT then provided Chang with experimental data from the Alcator C-Mod against which his team could compare results from simulations by using XGC. With an allocation of time under the INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, the team performed extreme-scale simulations on Summit by employing the new Alcator C-Mod data using a finer grid and including a greater number of particles.

“They gave us their data, and our code still agreed with the experiment, showing a much narrower divertor heat-load width than the full-power ITER,” Chang said. “What that meant was that either our code produced a wrong result in the earlier full-power ITER simulation on Titan or there was a hidden parameter that we needed to account for in the prediction formula.”

Machine learning reveals a new formula

Chang suspected that the hidden parameter might be the radius of the gyromotions, called the gyroradius, divided by the size of the machine. Chang then fed the new results to a machine learning program called Eureqa, presently owned by DataRobot, asking it to find the hidden parameter and a new formula for the ITER prediction. The program spit out several new formulas, verifying the gyroradius divided by the machine size as being the hidden parameter. The simplest of these formulas most agreed with the physics insights.

Chang presented the findings at various international conferences last year. He was then given three more simulation cases from ITER headquarters to test the new formula. The simplest formula successfully passed the test. PPPL research staff physicists Seung-Hoe Ku and Robert Hager employed the Summit and the Theta supercomputers for these three critically important ITER test simulations. Summit is located at the OLCF, a DOE Office of Science User Facility at ORNL. Theta is located at ALCF, another DOE Office of Science User Facility, located at ANL.

In an exciting finding, the new formula predicted the same results as the present experimental data—a huge jump in the full-power ITER’s heat-load width, with the medium-power ITER landing in between.

“Verifying whether ITER operation is going to be difficult due to an excessively narrow divertor heat-load width was something the entire fusion community has been concerned about, and we now have hope that ITER might be much easier to operate,” Chang said. “If this formula is correct, design engineers would be able to use it in their design for more economical fusion reactors.”

A big data problem

Each of the team’s ITER simulations consisted of 2 trillion particles and more than 1,000 time steps, requiring most of the Summit machine and one full day or longer to complete. The data generated by one simulation, Chang said, could total a whopping 200 petabytes, eating up nearly all of Summit’s file system storage.

“Summit’s file system only holds 250 petabytes’ worth of data for all the users,” Chang said. “There is no way to get all this data out to the file system, and we usually have to write out some parts of the physics data every 10 or more time steps.”

The IBM AC922 Summit supercomputer’s storage system. Image Credit: Genevieve Martin, ORNL

This has proven challenging for the team, who often found new science in the data that was not saved in the first simulation.

“I would often tell Dr. Ku, ‘I wish to see this data because it looks like we could find something interesting there,’ only to discover that he could not save it,” Chang said. “We need reliable, large-compression-ratio data reduction technologies, so that’s something we are working on and are hopeful to be able to take advantage of in the future.”

Chang added that staff members at both the OLCF and ALCF were critical to the team’s ability to run codes on the centers’ massive high-performance computing systems.

“Help rendered by the OLCF and ALCF computer center staff—especially from the liaisons—has been essential in enabling these extreme-scale simulations,” Chang said.

The team is anxiously awaiting the arrival of two of DOE’s upcoming exascale supercomputers, the OLCF’s Frontier and ALCF’s Aurora, machines that will be capable of a billion billion calculations per second, or 1018 calculations per second. The team will next include more complex physics, such as electromagnetic turbulence in a more refined grid with a greater number of particles, to verify the new formula’s fidelity further and improve its accuracy. The team also plans to collaborate with experimentalists to design experiments to further validate the electromagnetic turbulence results that will be obtained on Summit or Frontier.

This research was supported by the DOE Office of Science Scientific Discovery through Advanced Computing program.

Related Publication: C.S. Chang et al., “Constructing a New Predictive Scaling Formula for ITER’s Divertor Heat-Load Width Informed by a Simulation-Anchored Machine Learning,” Physics of Plasmas 28 (2021) 022501, doi:10.1063/5.0027637.

UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


Source: RACHEL MCDOWELL, OLCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

New Algorithm Overcomes Hurdle in Fusion Energy Simulation

January 15, 2022

The exascale era has brought with it a bevy of fusion energy simulation projects, aiming to stabilize the notoriously delicate—and so far, unmastered—clean energy source that would transform the world virtually overn Read more…

Summit Powers Novel Protein Function Prediction Work

January 13, 2022

There are hundreds of millions of sequenced proteins and counting—but only 170,000 have had their structures solved by researchers, bottlenecking our understanding of proteins and their functions across organisms’ ge Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to efforts to improve the underlying ‘noisy’ hardware, there's be Read more…

AWS Solution Channel

shutterstock 377963800

New – Amazon EC2 Hpc6a Instance Optimized for High Performance Computing

High Performance Computing (HPC) allows scientists and engineers to solve complex, compute-intensive problems such as computational fluid dynamics (CFD), weather forecasting, and genomics. Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

Edge to Exascale: A Trend to Watch in 2022

January 5, 2022

Edge computing is an approach in which the data is processed and analyzed at the point of origin – the place where the data is generated. This is done to make data more accessible to end-point devices, or users, and to reduce the response time for data requests. HPC-class computing and networking technologies are critical to many edge use cases, and the intersection of HPC and ‘edge’ promises to be a hot topic in 2022. Read more…

Citing ‘Shortfalls,’ NOAA Targets Hundred-Fold HPC Increase Over Next Decade

January 5, 2022

From upgrading the Global Forecast System (GFS) to acquiring new supercomputers, the National Oceanic and Atmospheric Administration (NOAA) has been making big moves in the HPC sphere over the last few years—but now it’s setting the bar even higher. In a new report, NOAA’s Science Advisory Board (SAB) highlighted... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire