Scientists Using Intel-Cray ‘Theta’ Supercomputer to Map Brain Function

September 14, 2017

Sept. 14, 2017 — A neuroscientist and a computational scientist walk into a synchrotron facility to study a mouse brain… Sounds like a great set-up for a comedy bit, but there is no punchline. The result is cutting-edge science that can only be accomplished in a facility as scientifically integrated as the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

At a casual, or even a more attentive glance, Doga Gursoy and Bobby Kasthuri would seem at opposite ends of the research spectrum. Gursoy is an assistant computational scientist at Argonne’s Advanced Photon Source (APS), a DOE Office of Science User Facility; Kasthuri, an Argonne neuroscientist.

But together, they are using Argonne’s vast arsenal of innovative technologies to map the intricacies of brain function at the deepest levels, and describing them in greater detail than ever before through advanced data analysis techniques.

Gursoy and Kasthuri are among the first group of researchers to access Theta, the new 9.65 petaflops Intel-Cray supercomputer housed at the Argonne Leadership Computing Facility (ALCF), also a DOE Office of Science User Facility. Theta’s advanced and flexible software platform supports the ALCF Data Science Program (ADSP), a new initiative targeted at big data problems, like Gursoy and Kasthuri’s brain connectome project.

ADSP projects explore and improve a variety of computational methods that will enable data-driven discoveries across all scientific disciplines.

“By developing and demonstrating rapid analysis techniques, such as data mining, graph analytics and machine learning, together with workflows that will facilitate productive usage on our systems for applications, we will pave the way for more and more science communities to use supercomputers for their big data challenges in the future,” said Venkat Vishwanath, ALCF Data Sciences Group Lead.

All about the connections

This new ADSP study of connectomes maps the connections of every neuron in the brain, whether human or mouse. Determining the location of every cell in the brain and how they communicate with each other is a daunting task, as each cell makes thousands of connections. The human brain, for example, has some 100 billion neurons, creating 100 trillion connections. Even the average mouse brain has 75 million neurons.

This ALCF award targets big data problems and our application of brain imaging does just that,” said Gursoy, assistant computational scientist in the X-Ray Science Division of Argonne’s Advanced Photon Source. “The basic goal is simple — we would like to be able to image all of the neurons in the brain — but the datasets from X-rays and electron microscopes are extremely large. They are at the tera- and petabyte scales. So we would like to use Theta to build the software and codebase infrastructure in order to analyze that data.”

This research was supported by the U.S. Department of Energy’s Office of Science. A portion of the work was also supported by Argonne’s Laboratory-Directed Research and Development (LDRD) program.

The process begins with two imaging techniques that will provide the massive sets of data for analysis by Theta. One is at the APS, where full brains can be analyzed at submicron resolution — in this case, the brain of a petite shrewmouse — through X-ray microtomography, a high-resolution 3-D imaging technique. Argonne’s X-ray Sciences Division of the APS provides the expertise for the microtomography research. Much like a CT scanner, it produces images as micro-thin slices of a material whose structure can be meticulously scrutinized. While this resolution provides a detailed picture of blood vessels and cell bodies, the researchers aim to go still deeper.

That depth of detail requires the use of an electron microscope, which transmits a short-wavelength electron beam to deliver resolution at the nanometer scale. This will allow for the capture of all the synaptic connections between individual neurons at small targeted regions guided by the X-ray microtomography.

For years, scientists at the APS have used these techniques to deepen our understanding of a wide variety of materials, from soil samples to new materials to biological matter,” said Kamel Fezzaa from sector 32-ID at the APS. “By coordinating our efforts with Argonne high-speed computing capabilities for this project, we are able to provide some truly revolutionary images that could provide details about brain functions that we have never before been able to observe.”

Both techniques can produce petabytes of information a day and, according to the researchers, the next generations of both microscopes will increase that amount dramatically.

Images produced by these datasets have to be processed, reconstructed and analyzed. Through the ADSP, Gursoy and Kasthuri are developing a series of large-scale data and computational steps — a pipeline — that integrates exascale computational approaches into an entirely new set of tools for brain research.

Taming of the shrew

The first case study for this pipeline is the reconstruction of an entire adult shrewmouse brain, which, they estimate, will produce one exabyte of data, or one billion gigabytes. And the studies only get bigger from there.

Machine learning will go through these datasets and help come up with predictive models. For this project, it can help with segmentation or reconstruction of the brain and help classify or identify features of interest,” said Vishwanath.

Lessons learned from the smaller shrewmouse brain will be applied to a large mouse brain, which constitutes a 10-fold increase in volume. Comparisons between the two will reveal how organizational structures form during development, from embryo to adult, and how they evolve. The reconstruction of a non-human primate brain, with a volume 100 times larger than a mouse brain, is being considered for a later study.

A neuroscientist and a computational scientist leave a synchrotron facility with studies from a mouse brain . . .  armed with new techniques to analyze this data. The images produced by their work will provide a clearer understanding of how even the smallest changes to the brain play a role in the onset and evolution of neurological diseases, such as Alzheimer’s and autism, and perhaps lead to improved treatments or even a cure.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: John Spizzirri, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This