SDSC Assists Researchers in Wildlife Tracking Project

July 3, 2014

July 3 — A team including researchers from the U.S. Geological Survey (USGS) and the San Diego Zoo’s Institute for Conservation Research has developed a novel methodology that for the first time combines 3D and advanced range estimator technologies to provide highly detailed data on the range and movements of terrestrial, aquatic, and avian wildlife species.

A paper detailing the project, called ‘Movement-based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation’, was published July 2 in the PLoS-ONE online science journal. A video of the project can be viewed on SeedMe at www.seedme.org/condor_vis.

Relying on expertise from researchers at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, the team created highly detailed data sets and visualizations after they tracked three highly iconic but threatened species: California condors, giant pandas, and dugongs – a large marine animal somewhat similar to the manatee.

From Days to Minutes

“We were able to speed up their software by several orders of magnitude,” said Robert Sinkovits, SDSC’s Director of the Scientific Applications Group, which helps researchers make optimal use of SDSC’s larger supercomputers, including Gordon and Trestles. “In this case, calculations that had formerly taken four days to complete were finished in less than half an hour.”

What started as a supercomputing challenge – since 3D modeling is much more computationally data intensive than 2D – actually became an exercise in optimizing codes that makes it possible for the current problems of interest to be done on laptops or even smart phones.

“While the researchers with the San Diego Zoo and USGS came to SDSC for our supercomputing, they stayed for our expertise,” said Sinkovits. “We welcome them to use both our systems and expertise to solve other challenges that were previously considered to be intractable.”

Gordon is being used to create interactive visualizations, and will make it easier for the software developers to explore the impact of algorithmic modifications on the quality of the solution.

The visualization expertise was provided by Amit Chourasia, senior visualization scientist at SDSC.

“We made changes to write the data into a more compact format, which enabled swift output and ingestion,” said Chourasia. “A key goal was to allow the experts to visualize the data directly on Gordon via remote access, as it is essential to minimize data movement and replication especially when data sizes grow. Currently, we’re working to fuse data from various sources such as topography and climate to further aid the understanding of such habitats.”

2D or Not 2D

“Our collaborative research team has created a novel and powerful tool for visualizing and modeling animal home ranges in 3D that harnesses the power of SDSC to fully exploit the increasing size and quality of 3D animal biotelemetry tracking and datasets,” said James Sheppard, a senior researcher within the Applied Animal Ecology Division of the San Diego Zoo’s Institute for Conservation Research, and a member of the research team. “This provides us with deeper insights into patterns of animal space-use and informs strategies for the conservation management of endangered species and their habitats.”

Specifically, the project’s advancement centered on the use of 3D technology for home range estimators, as opposed to traditional 2D systems typically used by ecologists. In a graphic image, the x and y axes denote width and height, while the z axis denotes depth, or vertical movement. The team developed what is called a movement-based kernel density estimator (MKDE) to estimate animal movements.

“We show that analyses and visualization using 3D MKDEs are more accurate and informative than traditional 2D estimators in representing the space use of animals that have a substantive vertical component, such as those that fly, traverse steep terrain, or dive in the water,” said Jeff Tracy, an ecologist at the USGS and lead author of the study.

“Biologists and ecologists are only beginning to recognize the value of incorporating the vertical aspect into analyses, which more realistically represents the space used by an animal,” added Tracy, who developed the key algorithm vital to this research.

California Condors

One aspect of the study focused on learning more about the range and movements of the California condor. While its population now stands at approximately 400 birds – up from only 22 in the mid- 1980s – conservation efforts to reintroduce this ecologically-important species to its former habitat in the mountains of California and Mexico have been hampered by a lack of understanding about condor movement patterns and habitat use. To address this, the San Diego researchers have been attaching miniaturized GPS biotelemetry units to every condor that it releases into the wild, to gather valuable tracking data.

“We have been calculating home ranges for the tracked condors in three dimensions for the first time using this GPS location data, and our novel density estimator was used to incorporate the vertical component of animal movements into projections of space-use,” said Sheppard.

Although the team successfully developed appropriate algorithms for creating 3D home ranges, actually extending animal home range volumes into 3D is computationally demanding, especially for animals tracked using highly accurate GPS telemetry devices for which high-resolution home ranges should be calculated to capitalize on the fine-scale location data collected.

“It is also highly computationally intensive to generate 3D home ranges from GPS telemetry data collected from animals that occupy habitats encompassing large areas, such as the California condors and giant pandas tracked in the wild by San Diego Zoo Global and its collaborators. These computing challenges are why researchers have typically only analyzed animal ranges in 2D up until now,” said Sheppard.

Using this 3D technology, researchers can link the resulting home range data to customized climate models of condor habitats, also in 3D, to generate high-resolution images of condor spatial behaviors, habitat use, and the climatic conditions that stimulate and modify condor movements.

“This data will be used as a predictive management tool to inform conservation efforts to restore condor populations, particularly with regard to emerging threats such as climate change and wind energy impacts,” added Sheppard.

Big Data and Ecology

On a broader note, Sheppard noted that the field of ecology is entering the era of ‘Big Data’ so it is imperative that new analytical and visualization tools be developed that can process, manage, and analyze these increasingly large and accurate multidimensional datasets acquired from biotelemetry tracking devices and remote sensing technologies. “Otherwise ecologists and conservation managers may literally not be able to see the forest for the trees,” he said.

Additional information on the project is at www.werc.usgs.gov/animalspace3d and a blogpost can be read here.

In addition to Tracy and Sheppard, researchers for the study included Jun Zhu (University of Wisconsin, Madison); Fuwen Wei (Chinese Academy of Science, Beijing); Ronald Swaisgood (San Diego Institute for Conservation Research); and Robert Fisher (USGS, San Diego).

The California Condor tracking part of the study was funded or supported by San Diego Zoological Global, the United States Fish and Wildlife Service, Sempra Energy, and Mexico-based organizations including  Instituto Nacional de Ecologia, Comision Nacional Para El Conocimiento y Uso de la Biodiversidad, Secretaria de Medio Ambiente y Recursos Naturales, Wildcoast/Costasalvaje. The Giant Panda research was funded by the National Natural Science Foundation of China, Wildlife Experimental Platform of Chinese Academy of Sciences, and San Diego Zoo Global. Funding and support for the dugong research was provided by CRC Reef, Australian Research Council LIEF Scheme, and James Cook University.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. With its two newest supercomputers, Trestles and Gordon, and a new system calledComet to be deployed in early 2015, SDSC is a partner in XSEDE (Extreme Science and Engineering Discovery Environment), the most advanced collection of integrated digital resources and services in the world.

Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This