SDSC Assists Researchers in Wildlife Tracking Project

July 3, 2014

July 3 — A team including researchers from the U.S. Geological Survey (USGS) and the San Diego Zoo’s Institute for Conservation Research has developed a novel methodology that for the first time combines 3D and advanced range estimator technologies to provide highly detailed data on the range and movements of terrestrial, aquatic, and avian wildlife species.

A paper detailing the project, called ‘Movement-based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation’, was published July 2 in the PLoS-ONE online science journal. A video of the project can be viewed on SeedMe at www.seedme.org/condor_vis.

Relying on expertise from researchers at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, the team created highly detailed data sets and visualizations after they tracked three highly iconic but threatened species: California condors, giant pandas, and dugongs – a large marine animal somewhat similar to the manatee.

From Days to Minutes

“We were able to speed up their software by several orders of magnitude,” said Robert Sinkovits, SDSC’s Director of the Scientific Applications Group, which helps researchers make optimal use of SDSC’s larger supercomputers, including Gordon and Trestles. “In this case, calculations that had formerly taken four days to complete were finished in less than half an hour.”

What started as a supercomputing challenge – since 3D modeling is much more computationally data intensive than 2D – actually became an exercise in optimizing codes that makes it possible for the current problems of interest to be done on laptops or even smart phones.

“While the researchers with the San Diego Zoo and USGS came to SDSC for our supercomputing, they stayed for our expertise,” said Sinkovits. “We welcome them to use both our systems and expertise to solve other challenges that were previously considered to be intractable.”

Gordon is being used to create interactive visualizations, and will make it easier for the software developers to explore the impact of algorithmic modifications on the quality of the solution.

The visualization expertise was provided by Amit Chourasia, senior visualization scientist at SDSC.

“We made changes to write the data into a more compact format, which enabled swift output and ingestion,” said Chourasia. “A key goal was to allow the experts to visualize the data directly on Gordon via remote access, as it is essential to minimize data movement and replication especially when data sizes grow. Currently, we’re working to fuse data from various sources such as topography and climate to further aid the understanding of such habitats.”

2D or Not 2D

“Our collaborative research team has created a novel and powerful tool for visualizing and modeling animal home ranges in 3D that harnesses the power of SDSC to fully exploit the increasing size and quality of 3D animal biotelemetry tracking and datasets,” said James Sheppard, a senior researcher within the Applied Animal Ecology Division of the San Diego Zoo’s Institute for Conservation Research, and a member of the research team. “This provides us with deeper insights into patterns of animal space-use and informs strategies for the conservation management of endangered species and their habitats.”

Specifically, the project’s advancement centered on the use of 3D technology for home range estimators, as opposed to traditional 2D systems typically used by ecologists. In a graphic image, the x and y axes denote width and height, while the z axis denotes depth, or vertical movement. The team developed what is called a movement-based kernel density estimator (MKDE) to estimate animal movements.

“We show that analyses and visualization using 3D MKDEs are more accurate and informative than traditional 2D estimators in representing the space use of animals that have a substantive vertical component, such as those that fly, traverse steep terrain, or dive in the water,” said Jeff Tracy, an ecologist at the USGS and lead author of the study.

“Biologists and ecologists are only beginning to recognize the value of incorporating the vertical aspect into analyses, which more realistically represents the space used by an animal,” added Tracy, who developed the key algorithm vital to this research.

California Condors

One aspect of the study focused on learning more about the range and movements of the California condor. While its population now stands at approximately 400 birds – up from only 22 in the mid- 1980s – conservation efforts to reintroduce this ecologically-important species to its former habitat in the mountains of California and Mexico have been hampered by a lack of understanding about condor movement patterns and habitat use. To address this, the San Diego researchers have been attaching miniaturized GPS biotelemetry units to every condor that it releases into the wild, to gather valuable tracking data.

“We have been calculating home ranges for the tracked condors in three dimensions for the first time using this GPS location data, and our novel density estimator was used to incorporate the vertical component of animal movements into projections of space-use,” said Sheppard.

Although the team successfully developed appropriate algorithms for creating 3D home ranges, actually extending animal home range volumes into 3D is computationally demanding, especially for animals tracked using highly accurate GPS telemetry devices for which high-resolution home ranges should be calculated to capitalize on the fine-scale location data collected.

“It is also highly computationally intensive to generate 3D home ranges from GPS telemetry data collected from animals that occupy habitats encompassing large areas, such as the California condors and giant pandas tracked in the wild by San Diego Zoo Global and its collaborators. These computing challenges are why researchers have typically only analyzed animal ranges in 2D up until now,” said Sheppard.

Using this 3D technology, researchers can link the resulting home range data to customized climate models of condor habitats, also in 3D, to generate high-resolution images of condor spatial behaviors, habitat use, and the climatic conditions that stimulate and modify condor movements.

“This data will be used as a predictive management tool to inform conservation efforts to restore condor populations, particularly with regard to emerging threats such as climate change and wind energy impacts,” added Sheppard.

Big Data and Ecology

On a broader note, Sheppard noted that the field of ecology is entering the era of ‘Big Data’ so it is imperative that new analytical and visualization tools be developed that can process, manage, and analyze these increasingly large and accurate multidimensional datasets acquired from biotelemetry tracking devices and remote sensing technologies. “Otherwise ecologists and conservation managers may literally not be able to see the forest for the trees,” he said.

Additional information on the project is at www.werc.usgs.gov/animalspace3d and a blogpost can be read here.

In addition to Tracy and Sheppard, researchers for the study included Jun Zhu (University of Wisconsin, Madison); Fuwen Wei (Chinese Academy of Science, Beijing); Ronald Swaisgood (San Diego Institute for Conservation Research); and Robert Fisher (USGS, San Diego).

The California Condor tracking part of the study was funded or supported by San Diego Zoological Global, the United States Fish and Wildlife Service, Sempra Energy, and Mexico-based organizations including  Instituto Nacional de Ecologia, Comision Nacional Para El Conocimiento y Uso de la Biodiversidad, Secretaria de Medio Ambiente y Recursos Naturales, Wildcoast/Costasalvaje. The Giant Panda research was funded by the National Natural Science Foundation of China, Wildlife Experimental Platform of Chinese Academy of Sciences, and San Diego Zoo Global. Funding and support for the dugong research was provided by CRC Reef, Australian Research Council LIEF Scheme, and James Cook University.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. With its two newest supercomputers, Trestles and Gordon, and a new system calledComet to be deployed in early 2015, SDSC is a partner in XSEDE (Extreme Science and Engineering Discovery Environment), the most advanced collection of integrated digital resources and services in the world.

Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This