SDSC Assists Researchers in Wildlife Tracking Project

July 3, 2014

July 3 — A team including researchers from the U.S. Geological Survey (USGS) and the San Diego Zoo’s Institute for Conservation Research has developed a novel methodology that for the first time combines 3D and advanced range estimator technologies to provide highly detailed data on the range and movements of terrestrial, aquatic, and avian wildlife species.

A paper detailing the project, called ‘Movement-based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation’, was published July 2 in the PLoS-ONE online science journal. A video of the project can be viewed on SeedMe at www.seedme.org/condor_vis.

Relying on expertise from researchers at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, the team created highly detailed data sets and visualizations after they tracked three highly iconic but threatened species: California condors, giant pandas, and dugongs – a large marine animal somewhat similar to the manatee.

From Days to Minutes

“We were able to speed up their software by several orders of magnitude,” said Robert Sinkovits, SDSC’s Director of the Scientific Applications Group, which helps researchers make optimal use of SDSC’s larger supercomputers, including Gordon and Trestles. “In this case, calculations that had formerly taken four days to complete were finished in less than half an hour.”

What started as a supercomputing challenge – since 3D modeling is much more computationally data intensive than 2D – actually became an exercise in optimizing codes that makes it possible for the current problems of interest to be done on laptops or even smart phones.

“While the researchers with the San Diego Zoo and USGS came to SDSC for our supercomputing, they stayed for our expertise,” said Sinkovits. “We welcome them to use both our systems and expertise to solve other challenges that were previously considered to be intractable.”

Gordon is being used to create interactive visualizations, and will make it easier for the software developers to explore the impact of algorithmic modifications on the quality of the solution.

The visualization expertise was provided by Amit Chourasia, senior visualization scientist at SDSC.

“We made changes to write the data into a more compact format, which enabled swift output and ingestion,” said Chourasia. “A key goal was to allow the experts to visualize the data directly on Gordon via remote access, as it is essential to minimize data movement and replication especially when data sizes grow. Currently, we’re working to fuse data from various sources such as topography and climate to further aid the understanding of such habitats.”

2D or Not 2D

“Our collaborative research team has created a novel and powerful tool for visualizing and modeling animal home ranges in 3D that harnesses the power of SDSC to fully exploit the increasing size and quality of 3D animal biotelemetry tracking and datasets,” said James Sheppard, a senior researcher within the Applied Animal Ecology Division of the San Diego Zoo’s Institute for Conservation Research, and a member of the research team. “This provides us with deeper insights into patterns of animal space-use and informs strategies for the conservation management of endangered species and their habitats.”

Specifically, the project’s advancement centered on the use of 3D technology for home range estimators, as opposed to traditional 2D systems typically used by ecologists. In a graphic image, the x and y axes denote width and height, while the z axis denotes depth, or vertical movement. The team developed what is called a movement-based kernel density estimator (MKDE) to estimate animal movements.

“We show that analyses and visualization using 3D MKDEs are more accurate and informative than traditional 2D estimators in representing the space use of animals that have a substantive vertical component, such as those that fly, traverse steep terrain, or dive in the water,” said Jeff Tracy, an ecologist at the USGS and lead author of the study.

“Biologists and ecologists are only beginning to recognize the value of incorporating the vertical aspect into analyses, which more realistically represents the space used by an animal,” added Tracy, who developed the key algorithm vital to this research.

California Condors

One aspect of the study focused on learning more about the range and movements of the California condor. While its population now stands at approximately 400 birds – up from only 22 in the mid- 1980s – conservation efforts to reintroduce this ecologically-important species to its former habitat in the mountains of California and Mexico have been hampered by a lack of understanding about condor movement patterns and habitat use. To address this, the San Diego researchers have been attaching miniaturized GPS biotelemetry units to every condor that it releases into the wild, to gather valuable tracking data.

“We have been calculating home ranges for the tracked condors in three dimensions for the first time using this GPS location data, and our novel density estimator was used to incorporate the vertical component of animal movements into projections of space-use,” said Sheppard.

Although the team successfully developed appropriate algorithms for creating 3D home ranges, actually extending animal home range volumes into 3D is computationally demanding, especially for animals tracked using highly accurate GPS telemetry devices for which high-resolution home ranges should be calculated to capitalize on the fine-scale location data collected.

“It is also highly computationally intensive to generate 3D home ranges from GPS telemetry data collected from animals that occupy habitats encompassing large areas, such as the California condors and giant pandas tracked in the wild by San Diego Zoo Global and its collaborators. These computing challenges are why researchers have typically only analyzed animal ranges in 2D up until now,” said Sheppard.

Using this 3D technology, researchers can link the resulting home range data to customized climate models of condor habitats, also in 3D, to generate high-resolution images of condor spatial behaviors, habitat use, and the climatic conditions that stimulate and modify condor movements.

“This data will be used as a predictive management tool to inform conservation efforts to restore condor populations, particularly with regard to emerging threats such as climate change and wind energy impacts,” added Sheppard.

Big Data and Ecology

On a broader note, Sheppard noted that the field of ecology is entering the era of ‘Big Data’ so it is imperative that new analytical and visualization tools be developed that can process, manage, and analyze these increasingly large and accurate multidimensional datasets acquired from biotelemetry tracking devices and remote sensing technologies. “Otherwise ecologists and conservation managers may literally not be able to see the forest for the trees,” he said.

Additional information on the project is at www.werc.usgs.gov/animalspace3d and a blogpost can be read here.

In addition to Tracy and Sheppard, researchers for the study included Jun Zhu (University of Wisconsin, Madison); Fuwen Wei (Chinese Academy of Science, Beijing); Ronald Swaisgood (San Diego Institute for Conservation Research); and Robert Fisher (USGS, San Diego).

The California Condor tracking part of the study was funded or supported by San Diego Zoological Global, the United States Fish and Wildlife Service, Sempra Energy, and Mexico-based organizations including  Instituto Nacional de Ecologia, Comision Nacional Para El Conocimiento y Uso de la Biodiversidad, Secretaria de Medio Ambiente y Recursos Naturales, Wildcoast/Costasalvaje. The Giant Panda research was funded by the National Natural Science Foundation of China, Wildlife Experimental Platform of Chinese Academy of Sciences, and San Diego Zoo Global. Funding and support for the dugong research was provided by CRC Reef, Australian Research Council LIEF Scheme, and James Cook University.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. With its two newest supercomputers, Trestles and Gordon, and a new system calledComet to be deployed in early 2015, SDSC is a partner in XSEDE (Extreme Science and Engineering Discovery Environment), the most advanced collection of integrated digital resources and services in the world.

Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This