SDSC Launches Comet Supercomputer

October 23, 2015

Oct. 23 — When the San Diego Supercomputer Center (SDSC) launched its first supercomputer, a Cray XMP-48 in late 1985, it was about as powerful as an iPhone is today. Now SDSC has formally taken the wraps off Comet, a new petascale supercomputer that is over 2 million times more powerful than that first system. 

With the ability to perform almost two million billion operations or calculations per second, Comet is designed to transform scientific research by expanding computational access to a larger number of researchers working across a wider range of domains.

“The San Diego Supercomputer Center plays a vital role in fulfilling our vision to solve our world’s most pressing research challenges,” UC San Diego Chancellor Pradeep K. Khosla told a capacity audience at SDSC last week as the Center showcased Cometas part of its 30th anniversary celebration.

Chancellor Khosla spoke about how SDSC has become a national leader in cyberinfrastructure, providing the high-performance computing, storage, networking, and expertise needed to harness the university’s collective research efforts efficiently and seamlessly. He also emphasized SDSC’s role in advancing UC San Diego’s Strategic Plan goals and research endeavors.

“Today, UC San Diego is a $1 billion research enterprise,” noted Khosla, adding that “SDSC has been a trail blazer for academic computing.”

“We are fortunate that SDSC has been one of the national leaders – research-oriented pioneers – in building an advanced cyberinfrastructure ‘nervous system’ for the academic and scientific communities,” said UC San Diego Vice Chancellor for Research Sandra A. Brown, another featured speaker at the event.

The result of a National Science Foundation grant valued at almost $24 million including hardware and operating funds, Comet is designed to meet the needs of what is often referred to as the ‘long tail’ of science – the idea that the large number of modest-sized computationally-based research projects represent, in aggregate, a tremendous amount of research that can yield scientific advances and discovery.

“The launch of Comet marks yet another stage in SDSC’s leadership in the national cyberinfrastructure ecosystem,” said James Kurose, Assistant Director of the NSF’s Computer and Information Science and Engineering (CISE) Directorate, in remarks at the SDSC event. “Through this launch and the extraordinary computing capabilities of SDSC, the center will continue to expand the frontiers of science and engineering, allowing researchers to open new windows into phenomena as vast as the Universe and as small as nanoparticles.”

SDSC Director Michael Norman noted that SDSC’s mission has expanded over its three decades to encompass much more than advanced computation, including a host of services related to the voluminous amount of digitally based information generated daily, and systems designed to analyze, store, and share that data.

“In recent years the research community has moved into a new era of scientific endeavor based on computational science, now best described as data-intensive science,” said Norman. “The term ‘big data’ became the short-hand description for this, or, for academia, ‘data science and engineering.’ This convergence of computational science with data science and engineering rests on an inherent reliance of interdisciplinary collaborations, which is needed to solve the grand research challenges of our times.”

Comet’s innovative design makes it ideal for supporting a broad range of research and computing modalities.  Two distinctive features – support for science gateways and high-performance virtualization – will significantly expand the community of researchers with access to high-performance computing resources,” said SDSC Deputy Director Shawn Strande, who also is Comet’s program manager. “Comet is expected to reach an active research community of over 10,000 users, and is destined to become one of the most productive HPC systems available to the academic research community.”

In addition to highlighting SDSC’s major milestones in an expanded timeline covering its 30-year history, the Center also announced the launch of a new fund-raising campaign for UC San Diego, in partnership with SDSC, designed to tackle some of the grand research challenges facing the State of California and beyond outlined previously in the campus’ Strategic Plan. Details about this new effort will be announced at a later date.

How SDSC’s ‘Comet’ Supercomputer is Serving Science and Society

Comet is configured to help transform advanced computing by expanding access and capacity not only among research domains that typically rely on high-performance computing – such as chemistry and biophysics – but among domains which are relatively new to using  supercomputers, such as genomics, finance, and the social sciences. Some of the domains already being served by Comet include:

Astrophysics: Supercomputers can greatly accelerate timescales for researching the origins of the universe.

Neurosciences, Brain Research: SDSC’s Neuroscience Gateways project will contribute to the national BRAIN initiative announced by the Obama Administration to deepen our understanding of the human brain.

Social Sciences: Sociologists and political scientists are analyzing newly accessible data sets to study censorship of the press, factors that affect participation in the political process, and the properties of social networks.

Molecular Science: Studying the properties of lipids, proteins, nucleic acids, and small molecules can advance our understanding of biophysical processes at the atomic scale, leading to new drug designs and reducing disease.

DNA Nanostructures: Conducting nanoscale biomolecular research could lead to low-cost DNA sequencing technologies, and in turn create targeted drug delivery systems and help explain the molecular causes of disease.

Alternative Energy Solutions/New Materials Research: Finding new and more efficient solutions to energy harvesting, nanoporous membranes for water desalinization, solar thermal fuels, and more.

Fluid Turbulent Physics: Supercomputers can create highly detailed simulations to track ocean currents or improve industry methods related to the discharge of pollutants, or oil flow in pipelines.

Climate Change/Environmental Sciences: Modeling atmospheric aerosols, identified as influencing the chemical composition and radiative balance of the troposphere, has direct implications for our climate and public health.

Seismic Research/Disaster Prevention: Keys to hazard management for major earthquakes, hurricanes, and wildfires include the ability to predict a wide range of possibilities. Supercomputer-generated simulations are used to inform decision-making strategies.

The Tree of Life: Biologists construct phylogenetic trees to capture the evolutionary relationship between species, and help us better understand the functions and interactions of genes, the origin and spread of diseases, the co-evolution of hosts and parasites, and migration of human populations.

Key Features of Comet

  • ~2 petaflops of overall peak performance – one million billion operations or calculations per second.
  • Dell compute nodes using next-generation Intel Xeon processors, 27 racks of compute nodes totaling 1,944 nodes or 46,656 cores.
  • 128 GB (gigabytes) of DRAM and 320 GB (gigabytes) of flash memory per standard compute node
  • 72 nodes per rack with full bisection InfiniBand FDR interconnect in each rack, and a 4:1 bisection cross-rack interconnect
  • Additional GPU and large-memory (1.5 Terabytes) nodes for applications such as visualization, molecular dynamics simulations, or de novo genome assembly
  • 7 PB (petabytes) of Lustre-based high-performance storage from Aeon, and 6 PB of durable storage for data reliability
  • First XSEDE production system to support high-performance virtualization

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster. SDSC is a partner in XSEDE (eXtreme Science and Engineering Discovery Environment), the most advanced collection of integrated digital resources and services in the world.

Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire