SDSC Launches Comet Supercomputer

October 23, 2015

Oct. 23 — When the San Diego Supercomputer Center (SDSC) launched its first supercomputer, a Cray XMP-48 in late 1985, it was about as powerful as an iPhone is today. Now SDSC has formally taken the wraps off Comet, a new petascale supercomputer that is over 2 million times more powerful than that first system. 

With the ability to perform almost two million billion operations or calculations per second, Comet is designed to transform scientific research by expanding computational access to a larger number of researchers working across a wider range of domains.

“The San Diego Supercomputer Center plays a vital role in fulfilling our vision to solve our world’s most pressing research challenges,” UC San Diego Chancellor Pradeep K. Khosla told a capacity audience at SDSC last week as the Center showcased Cometas part of its 30th anniversary celebration.

Chancellor Khosla spoke about how SDSC has become a national leader in cyberinfrastructure, providing the high-performance computing, storage, networking, and expertise needed to harness the university’s collective research efforts efficiently and seamlessly. He also emphasized SDSC’s role in advancing UC San Diego’s Strategic Plan goals and research endeavors.

“Today, UC San Diego is a $1 billion research enterprise,” noted Khosla, adding that “SDSC has been a trail blazer for academic computing.”

“We are fortunate that SDSC has been one of the national leaders – research-oriented pioneers – in building an advanced cyberinfrastructure ‘nervous system’ for the academic and scientific communities,” said UC San Diego Vice Chancellor for Research Sandra A. Brown, another featured speaker at the event.

The result of a National Science Foundation grant valued at almost $24 million including hardware and operating funds, Comet is designed to meet the needs of what is often referred to as the ‘long tail’ of science – the idea that the large number of modest-sized computationally-based research projects represent, in aggregate, a tremendous amount of research that can yield scientific advances and discovery.

“The launch of Comet marks yet another stage in SDSC’s leadership in the national cyberinfrastructure ecosystem,” said James Kurose, Assistant Director of the NSF’s Computer and Information Science and Engineering (CISE) Directorate, in remarks at the SDSC event. “Through this launch and the extraordinary computing capabilities of SDSC, the center will continue to expand the frontiers of science and engineering, allowing researchers to open new windows into phenomena as vast as the Universe and as small as nanoparticles.”

SDSC Director Michael Norman noted that SDSC’s mission has expanded over its three decades to encompass much more than advanced computation, including a host of services related to the voluminous amount of digitally based information generated daily, and systems designed to analyze, store, and share that data.

“In recent years the research community has moved into a new era of scientific endeavor based on computational science, now best described as data-intensive science,” said Norman. “The term ‘big data’ became the short-hand description for this, or, for academia, ‘data science and engineering.’ This convergence of computational science with data science and engineering rests on an inherent reliance of interdisciplinary collaborations, which is needed to solve the grand research challenges of our times.”

Comet’s innovative design makes it ideal for supporting a broad range of research and computing modalities.  Two distinctive features – support for science gateways and high-performance virtualization – will significantly expand the community of researchers with access to high-performance computing resources,” said SDSC Deputy Director Shawn Strande, who also is Comet’s program manager. “Comet is expected to reach an active research community of over 10,000 users, and is destined to become one of the most productive HPC systems available to the academic research community.”

In addition to highlighting SDSC’s major milestones in an expanded timeline covering its 30-year history, the Center also announced the launch of a new fund-raising campaign for UC San Diego, in partnership with SDSC, designed to tackle some of the grand research challenges facing the State of California and beyond outlined previously in the campus’ Strategic Plan. Details about this new effort will be announced at a later date.

How SDSC’s ‘Comet’ Supercomputer is Serving Science and Society

Comet is configured to help transform advanced computing by expanding access and capacity not only among research domains that typically rely on high-performance computing – such as chemistry and biophysics – but among domains which are relatively new to using  supercomputers, such as genomics, finance, and the social sciences. Some of the domains already being served by Comet include:

Astrophysics: Supercomputers can greatly accelerate timescales for researching the origins of the universe.

Neurosciences, Brain Research: SDSC’s Neuroscience Gateways project will contribute to the national BRAIN initiative announced by the Obama Administration to deepen our understanding of the human brain.

Social Sciences: Sociologists and political scientists are analyzing newly accessible data sets to study censorship of the press, factors that affect participation in the political process, and the properties of social networks.

Molecular Science: Studying the properties of lipids, proteins, nucleic acids, and small molecules can advance our understanding of biophysical processes at the atomic scale, leading to new drug designs and reducing disease.

DNA Nanostructures: Conducting nanoscale biomolecular research could lead to low-cost DNA sequencing technologies, and in turn create targeted drug delivery systems and help explain the molecular causes of disease.

Alternative Energy Solutions/New Materials Research: Finding new and more efficient solutions to energy harvesting, nanoporous membranes for water desalinization, solar thermal fuels, and more.

Fluid Turbulent Physics: Supercomputers can create highly detailed simulations to track ocean currents or improve industry methods related to the discharge of pollutants, or oil flow in pipelines.

Climate Change/Environmental Sciences: Modeling atmospheric aerosols, identified as influencing the chemical composition and radiative balance of the troposphere, has direct implications for our climate and public health.

Seismic Research/Disaster Prevention: Keys to hazard management for major earthquakes, hurricanes, and wildfires include the ability to predict a wide range of possibilities. Supercomputer-generated simulations are used to inform decision-making strategies.

The Tree of Life: Biologists construct phylogenetic trees to capture the evolutionary relationship between species, and help us better understand the functions and interactions of genes, the origin and spread of diseases, the co-evolution of hosts and parasites, and migration of human populations.

Key Features of Comet

  • ~2 petaflops of overall peak performance – one million billion operations or calculations per second.
  • Dell compute nodes using next-generation Intel Xeon processors, 27 racks of compute nodes totaling 1,944 nodes or 46,656 cores.
  • 128 GB (gigabytes) of DRAM and 320 GB (gigabytes) of flash memory per standard compute node
  • 72 nodes per rack with full bisection InfiniBand FDR interconnect in each rack, and a 4:1 bisection cross-rack interconnect
  • Additional GPU and large-memory (1.5 Terabytes) nodes for applications such as visualization, molecular dynamics simulations, or de novo genome assembly
  • 7 PB (petabytes) of Lustre-based high-performance storage from Aeon, and 6 PB of durable storage for data reliability
  • First XSEDE production system to support high-performance virtualization

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster. SDSC is a partner in XSEDE (eXtreme Science and Engineering Discovery Environment), the most advanced collection of integrated digital resources and services in the world.

Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire