SDSC Resources Used to Help Researchers Create New Drug Candidate That May Reduce Deficits in Parkinson’s Disease

October 7, 2016

Oct. 7 — An international team led by University of California San Diego researchers has employed a novel computational approach to design and create a new compound that in laboratory studies has reduced deficits and neurodegenerative symptoms that underlie Parkinson’s disease.

In a study published in the September 27 Advance Access issue of Brain, the researchers describe how their compound, dubbed NPT100-18A, prevents the binding and accumulation of alpha-synuclein or α-syn in neuronal membranes, now considered a hallmark of Parkinson’s disease and a related disorder called dementia with Lewy bodies.

“We’ve demonstrated a novel computational approach to design potential therapies for Parkinson’s disease and related disorders,” said the study’s co-first author Igor Tsigelny, a research scientist with the San Diego Supercomputer Center (SDSC) at UC San Diego, as well as the UC San Diego Moores Cancer Center and Department of Neurosciences.

Added Eliezer Masliah, the study’s principal investigator and former professor in UC San Diego School of Medicine’s Department of Neurosciences:  “It’s a first step, but we believe it’s a big step.”

Parkinson’s disease, which affects more than 10 million people worldwide, is characterized by impairment or deterioration of neurons in the area of the brain known as the substantia nigra. The disease typically occurs in people over the age of 60, with symptoms of shaking, rigidity, difficulty in walking, generally developing slowly over time and sometimes followed later by impairment in behavior and thought processes.

Since most symptoms of Parkinson’s disease are triggered by a lack of dopamine in the brain, many medications are aimed at either temporarily replenishing dopamine or mimicking the action of this brain chemical. Unfortunately, current drugs have only a limited impact on long-term neurological deficits and mortality.

For this reason, scientists have begun to focus their efforts on α-syn’s role in the disease, based largely on computer modeling describing how mutant forms of this protein penetrate and coil in cell membranes, and then aggregate in a matter of nanoseconds into dangerous ring structures that open pores to toxic ions that ultimately destroy neurons. The modeling has been supported by electron microscopy showing how damaged neurons in Parkinson’s patients are riddled with these ring structures.

Following this discovery in 2012, UC San Diego researchers began an intense search to identify drug candidates that could block the early formation of ring structures. Specifically, the researchers homed in on “hot spots” that block the binding of two α-syn proteins, or dimers.

“Our thinking was that disrupting the formation of membrane-embedded dimers at this early intervention point could reverse the effects of α-syn on synaptic function at a stage before irreversible neurodegenerative processes have been initiated,” said Masliah, now with the National Institutes of Health (NIH).

But the hunt proved highly complex, owing largely to the nature of the unstructured state of α-syn, sometimes referred to as a “chameleon” that constantly shifts its shape, somewhat like a slinky that’s bobbing and weaving on top of an earthquake epicenter.

“Our biggest hurdle was that α-syn doesn’t have any stable conformation,” said Tsigelny. “So long simulations were needed to define a huge set of possible conformations to find clusters of possible compounds that would work.”

Enter several supercomputers – including Trestles, Gordon, and the Triton Shared Computing Cluster, all based at SDSC; and Blue Gene, with the Argonne National Laboratory – that performed molecular dynamic simulations of in silico structures that would displace α-syn from cell membranes.

Based on these simulations, other members of the research team, including Wolfgang Wrasidlo, executive director of medicinal chemistry at Neuropore Therapeutics in San Diego, synthesized a library of 34 potential compounds that targeted the “hot spot” where pairs of α-syn proteins bind, merge, and aggregate in the cell membrane, an early step in the formation of toxic rings and ultimate death of a neuron. Of these drug candidates, the researchers identified one compound – NPT100-18A – as the most promising.

“Essentially, this compound mimics the protein’s amino acids in the place where two α-synucleins come into contact, thus preventing the binding of the second protein,” said Wrasidlo, previously with UC San Diego Moores Cancer Center, and the study’s first author.

Subsequent electron microscopy imaging by researchers at the University of Vienna demonstrated that the new compound reduced the formation of α-syn clusters in cell membranes. Further studies with “transgenic” mouse models prone to Parkinson’s disease, both at UC San Diego and UCLA, concluded that the compound improved behavioral deficits and neurodegeneration. Within an hour after it was administered, imaging studies in these mice further showed that the compound reduced accumulation of α-syn in cortical synapses.

“Specifically targeting the α-synuclein structure that is stabilized in cell membranes also allows for a more specific molecularly targeted drug design,” added Masliah.

Though highly encouraging, the researchers caution that the compound needs to be refined before clinical trials can be launched in the future.

Also contributing to the study, titled “A De Novo Compound Targeting Alpha-Synuclein Improves Deficits in Models of Parkinson’s Disease,” were Edward Rockenstein, Simona Eleuteri, Valentina Kouznetsova, Brian Spencer, Paula Desplats, Tania Gonzalez-Ruelas, Margaritha Trejo, and Cassia Overk, all from UC San Diego; Garima Dutta, Chunni Zhu, and Marie-Francoise, all from UCLA; Thomas Schwartz, Karin Ledolter and Robert Konrat, all from the University of Vienna; Diana Price, Douglas Bonhaus, Amy Paulino and Dieter Meier, all from Neuropore, based in San Diego; Stefan Winter and Herbert Moessler, from EVER Neuropharma, based in Austria; and Age Skjevik, from the University of Bergen in Norway.

Funding for the research came from NIH grant AG18440, The Michael J. Fox Foundation for Parkinson’s Research, and Neuropore Therapies.

About SDSC 

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster, and are both part of the National Science Foundation’s XSEDE (Extreme Science and Engineering Discovery Environment) program.


Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire