SDSC Resources Used to Help Researchers Create New Drug Candidate That May Reduce Deficits in Parkinson’s Disease

October 7, 2016

Oct. 7 — An international team led by University of California San Diego researchers has employed a novel computational approach to design and create a new compound that in laboratory studies has reduced deficits and neurodegenerative symptoms that underlie Parkinson’s disease.

In a study published in the September 27 Advance Access issue of Brain, the researchers describe how their compound, dubbed NPT100-18A, prevents the binding and accumulation of alpha-synuclein or α-syn in neuronal membranes, now considered a hallmark of Parkinson’s disease and a related disorder called dementia with Lewy bodies.

“We’ve demonstrated a novel computational approach to design potential therapies for Parkinson’s disease and related disorders,” said the study’s co-first author Igor Tsigelny, a research scientist with the San Diego Supercomputer Center (SDSC) at UC San Diego, as well as the UC San Diego Moores Cancer Center and Department of Neurosciences.

Added Eliezer Masliah, the study’s principal investigator and former professor in UC San Diego School of Medicine’s Department of Neurosciences:  “It’s a first step, but we believe it’s a big step.”

Parkinson’s disease, which affects more than 10 million people worldwide, is characterized by impairment or deterioration of neurons in the area of the brain known as the substantia nigra. The disease typically occurs in people over the age of 60, with symptoms of shaking, rigidity, difficulty in walking, generally developing slowly over time and sometimes followed later by impairment in behavior and thought processes.

Since most symptoms of Parkinson’s disease are triggered by a lack of dopamine in the brain, many medications are aimed at either temporarily replenishing dopamine or mimicking the action of this brain chemical. Unfortunately, current drugs have only a limited impact on long-term neurological deficits and mortality.

For this reason, scientists have begun to focus their efforts on α-syn’s role in the disease, based largely on computer modeling describing how mutant forms of this protein penetrate and coil in cell membranes, and then aggregate in a matter of nanoseconds into dangerous ring structures that open pores to toxic ions that ultimately destroy neurons. The modeling has been supported by electron microscopy showing how damaged neurons in Parkinson’s patients are riddled with these ring structures.

Following this discovery in 2012, UC San Diego researchers began an intense search to identify drug candidates that could block the early formation of ring structures. Specifically, the researchers homed in on “hot spots” that block the binding of two α-syn proteins, or dimers.

“Our thinking was that disrupting the formation of membrane-embedded dimers at this early intervention point could reverse the effects of α-syn on synaptic function at a stage before irreversible neurodegenerative processes have been initiated,” said Masliah, now with the National Institutes of Health (NIH).

But the hunt proved highly complex, owing largely to the nature of the unstructured state of α-syn, sometimes referred to as a “chameleon” that constantly shifts its shape, somewhat like a slinky that’s bobbing and weaving on top of an earthquake epicenter.

“Our biggest hurdle was that α-syn doesn’t have any stable conformation,” said Tsigelny. “So long simulations were needed to define a huge set of possible conformations to find clusters of possible compounds that would work.”

Enter several supercomputers – including Trestles, Gordon, and the Triton Shared Computing Cluster, all based at SDSC; and Blue Gene, with the Argonne National Laboratory – that performed molecular dynamic simulations of in silico structures that would displace α-syn from cell membranes.

Based on these simulations, other members of the research team, including Wolfgang Wrasidlo, executive director of medicinal chemistry at Neuropore Therapeutics in San Diego, synthesized a library of 34 potential compounds that targeted the “hot spot” where pairs of α-syn proteins bind, merge, and aggregate in the cell membrane, an early step in the formation of toxic rings and ultimate death of a neuron. Of these drug candidates, the researchers identified one compound – NPT100-18A – as the most promising.

“Essentially, this compound mimics the protein’s amino acids in the place where two α-synucleins come into contact, thus preventing the binding of the second protein,” said Wrasidlo, previously with UC San Diego Moores Cancer Center, and the study’s first author.

Subsequent electron microscopy imaging by researchers at the University of Vienna demonstrated that the new compound reduced the formation of α-syn clusters in cell membranes. Further studies with “transgenic” mouse models prone to Parkinson’s disease, both at UC San Diego and UCLA, concluded that the compound improved behavioral deficits and neurodegeneration. Within an hour after it was administered, imaging studies in these mice further showed that the compound reduced accumulation of α-syn in cortical synapses.

“Specifically targeting the α-synuclein structure that is stabilized in cell membranes also allows for a more specific molecularly targeted drug design,” added Masliah.

Though highly encouraging, the researchers caution that the compound needs to be refined before clinical trials can be launched in the future.

Also contributing to the study, titled “A De Novo Compound Targeting Alpha-Synuclein Improves Deficits in Models of Parkinson’s Disease,” were Edward Rockenstein, Simona Eleuteri, Valentina Kouznetsova, Brian Spencer, Paula Desplats, Tania Gonzalez-Ruelas, Margaritha Trejo, and Cassia Overk, all from UC San Diego; Garima Dutta, Chunni Zhu, and Marie-Francoise, all from UCLA; Thomas Schwartz, Karin Ledolter and Robert Konrat, all from the University of Vienna; Diana Price, Douglas Bonhaus, Amy Paulino and Dieter Meier, all from Neuropore, based in San Diego; Stefan Winter and Herbert Moessler, from EVER Neuropharma, based in Austria; and Age Skjevik, from the University of Bergen in Norway.

Funding for the research came from NIH grant AG18440, The Michael J. Fox Foundation for Parkinson’s Research, and Neuropore Therapies.

About SDSC 

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster, and are both part of the National Science Foundation’s XSEDE (Extreme Science and Engineering Discovery Environment) program.


Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This