SDSC Supercomputer Modeling Reveals Acrobatics of CRISPR-Cas9 Technology

September 13, 2016

Sept. 13 — A team led by researchers at the University of California San Diego has captured in step-by-step atomic detail the surgical editing of DNA strands by CRISPR-Cas9, the innovative gene-splicing technology that in recent years has transformed the field of genetic engineering.

Simulations performed by the Comet supercomputer at the San Diego Supercomputer Center (SDSC) at UC San Diego describe the “striking plasticity” of CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 and how it identifies, merges, and slices its target DNA strand. What’s more, the findings offer for the first hints at a key role played by the leftover non-target DNA strand, whose part in this biological cast of characters previously was unclear.

The goal of this study — published in the September 8 issue of ACS Central Science, the new flagship journal of the American Chemical Society — is to provide a foundation for the design of other novel, highly accurate genome-splicing technologies that don’t yield the “off-target” DNA breaks currently frustrating the potential of the current CRISPR-Cas9 system, particularly for clinical uses.

“CRISPR-Cas9 is not perfect since it can cause off-target effects or non-selective cleavage of DNA sequences, creating unwanted collateral damage,” said Giulia Palermo, a postdoctoral scholar with the UC San Diego Department of Pharmacology and lead author of the study.

“If we can design a very specific genome editing machinery, we can target the modification of genes controlling several diseases, including rare diseases and brain diseases, that are difficult to cure with available drugs,” added the study’s principal investigator J. Andrew McCammon, the Joseph E. Mayer Chair of Theoretical Chemistry, a Howard Hughes Medical Institute investigator, and Distinguished Professor of Pharmacology, all at UC San Diego.

“The rational design of more specific Cas9s, which are economically and environmentally friendly, and free from ethical issues, is our ultimate goal,” he said.

As its name implies, CRISPR-Cas9 is a dual entity with dual functions. The first consists of a short RNA guide molecule, part of which matches a target DNA sequence; the second is a Cas9 enzyme that recognizes and slices the DNA in a precise spot, whose location or address is post-marked by a nucleotide sequence called a protospacer adjacent motif, or PAM. The result is an RNA-DNA hybrid with a displaced non-target DNA strand.

Dubbed Science magazine’s “breakthrough of the year” in 2015, enthusiastic researchers around the world are just now scratching the surface of CRISPR-Cas9’s potential, with hopes of treating diseases through gene therapy, or driving advances in areas from crop engineering to the production of biofuels. What the technology ideally offers is specificity: the ability to target, edit, and insert new fragments of DNA sequences into the vast genome of the human and other species of animals and plants.

However, this transformative technology – known for the ease with which it can be programmed to cleave specific DNA targets – isn’t without its flaws. Studies have revealed that the RNA guide used to direct the cleaving enzyme to its target can sometimes go astray, landing on other DNA strands with similar but not identical sequences. The result is “off-target” mutations, severely limiting the technology’s vast array of potential applications, particular for human therapy.

Although extensive studies of the CRISPR-Cas9 systems, including X-ray crystallography and cryoelectron microscopy (cryoEM), have revealed detailed views of the system’s structure and biological activity, the dynamics of Cas9 and its step-by-step acrobatics with nucleic acids during its merger and cleavage of DNA have remained fuzzy at best.

To produce a motion picture-like view of this molecular interplay, UC San Diego researchers turned to the Comet supercomputer to perform atomistic molecular dynamics – a method that captures a more complete vision of the myriad shapes and conformations that a target protein molecule may go through – at petascale speeds (one quadrillion arithmetic calculations per second).

“Access to Comet, greatly facilitated by SDSC, was essential to completing this work in a reasonable timeframe,” said McCammon, also an SDSC Fellow and chemistry and biochemistry professor in UC San Diego’s Division of Physical Sciences. “The power of high-performance computing at the petascale-level and atomistic molecular dynamics simulations are needed to obtain key insights and relevant biophysical information that otherwise are inaccessible with currently available experimental techniques.”

The resulting simulations, performed over multi-microsecond timescales, revealed for the first time what the research team called the “remarkable” plasticity of the Cas9 system, and identified key factors underlying the myriad structural changes taking place during the merger and preparation for cleaving of its target DNA strand.

Of particular interest, the researchers were surprised to find that the leftover non-target DNA strand, whose role was generally considered unimportant, is actually a critical player in the system, serving as a type of starter key that triggers the final stage of the process.

“The motion and position of the non-target DNA strand triggers local conformational changes that result in a shift of an active domain site (HNH) of Cas9 towards the cleavage site on the target DNA for catalysis,” said McCammon, recently named the winner of the 2016-17 Joseph O. Hirschfelder Prize in Theoretical Chemistry, awarded by the Theoretical Chemistry Institute at the University of Wisconsin-Madison. “These molecular simulations strongly suggest the presence of non-target DNA as a key factor for the conformational activation of the HNH domain.”

Also participating the study, called “Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations”, were: Yinglong Miao, a research specialist with the Howard Hughes Medical Institute at UC San Diego and research scientist with the UC San Diego Department of Pharmacology; Ross C. Walker, associate research professor at SDSC, NVIDA Fellow, and adjunct associate professor in the Department of Chemistry and Biochemistry at UC San Diego; and Martin Jinek, currently an assistant professor at the University of Zurich who first discovered, in Jennifer Doudna’s lab at UC Berkeley, the ability of Cas9 to be programmed with single RNA strands for efficient DNA cleavage.

Funding for the study was provided by the Swiss National Science Foundation, in addition to grants to the McCammon lab from the National Institutes of Health, the National Science Foundation, and Howard Hughes Medical Institute; and research fellowships to Ross Walker from Intel and NVIDIA.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster, and are both part of the National Science Foundation’s XSEDE (Extreme Science and Engineering Discovery Environment) program.


Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This