Simulations Performed on CSCS ‘Piz Daint’ Supercomputer Expand Concept of Superradiance

November 19, 2020

Nov. 19, 2020 — Today, many research advances in medicine, life science or high-density physics are achieved thanks to the most powerful light sources on the planet, namely synchrotrons and free electron lasers such as the SwissFEL X-ray free electron laser at the Paul Scherrer Institute in Switzerland. Free electron laser facilities are putting a lot of effort in creating and using a type of enhanced radiation known as superradiance. The term denotes intense, coherent radiation — coherent meaning that the frequency and phase of the waves constituting the radiation are identical. These sharp bursts of electromagnetic light can benefit various fields of research. In the life sciences, for example, short light bursts are needed to resolve small time scales, and certain fields of physics require very strong radiation. However, creating superradiance has proven to be extremely tricky — so far.

Now, with simulations performed with a PRACE allocation on the “Piz Daint” supercomputer at CSCS in Switzerland, a team of scientists at the Instituto Superior Técnico in Lisbon, Portugal, has downright revolutionised the physical concept of superradiance by proposing a new, more accessible way to produce this valuable radiation. The results, which were recently published in Nature Physics, lay the groundwork for further computational and experimental investigation as well as applications in a number of scientific fields.

Expanding the superradiance regime

Like other forms of radiation, superradiance can occur when gases or charged particles such as electrons are temporarily excited by light and then re-emit radiation upon returning to their ground states. However, in order to create this especially intense light beam, the radiating electrons need to be packed densely together. Specifically, the average distance between the particles has to be much lower than the wavelength of the radiated light. This is a fundamental constraint for superradiance to arise — or so it was thought — and difficult to achieve.

“Even with very powerful magnets, it is extremely challenging to manoeuvre electrons travelling nearly at the speed of light to compress them in a sufficiently dense manner”, explains Jorge Vieira, a professor in plasma physics at Técnico and lead author of the paper. He and his co-workers therefore set out to find a way to create superradiance without having to satisfy these stringent conditions.

Pictured: the structure of light pulses in generalised superradiance, where the superradiant light forms a helical pattern. Each colour represents a region in space-time where the radiated amplitude is constant. Credit: Jorge Vieira / IST

The scientists had first discovered this novel superradiance regime by analysing different plasma accelerators. Such devices accelerate electrons by using the electric field associated with an electron plasma wave that is excited by laser pulses or electron bunches. In the plasma wave, the team observed a peculiar behaviour, a kind of coherent motion that made it appear as though the accelerated electrons would sometimes travel faster than the speed of light. Such a behaviour is of course physically impossible when considering a single electron and only becomes apparent as a collective effect, similar to a “la ola” in a football stadium where the individuals forming it only move up and down, but, as a collective make the wave move forward. This superluminal effect — superluminal meaning an apparently faster-than-light speed — leads to a sort of shock wave of intense coherent radiation at a specific beam angle: that is, superradiance. From this observation, Vieira and his co-workers hypothesized that it should be possible to induce superradiance deliberately by causing such collective superluminal motions in charged particles.

Generalised superradiance: easier to achieve in practice

The team was indeed able to derive the corresponding mathematical concept of this “generalised superradiance”, which they subsequently tested with numerical simulations of high energy electrons performed on “Piz Daint”. They employed the so-called particle in cell technique using the Osiris code — a first principle calculation that allows the scientists to capture the dynamics of charged particles and the electrical field that they create. To this model, the team coupled a radiation emission code named RaDiO (Radiation Diagnostic for Osiris). The computing load of these coupled simulations was orders of magnitude higher than usual in plasma simulations, which was necessary to accurately capture the radiation emission at very high frequencies.

“In fact, we found conditions in which superradiance can be created even with electrons that are arbitrarily spaced”, says Vieira. All that is needed, according to the findings, is a certain modulation of the electrons before they enter the undulator. Undulators are devices in synchrotrons and free electron lasers that induce the particles to emit radiation and produce light beams. If the electrons are spatially modulated by large magnets such as those of a free electron laser — meaning wiggled in their wave motion in a certain manner — before entering an undulator, this influences their injection point and angle into the device. As a result, superradiance occurs.

This finding is extremely useful because it relaxes the demands on the electron beam properties in free electron lasers. “We expect that it will be much easier to achieve superradiance by this newly found beam modulation than by the conventional way of trying to reduce the distance between electron bunches”, says Vieira. What is more, with their work, the scientists have generalised a concept so fundamental that it may well influence a variety of scientific fields where superradiance already plays a role, like quantum mechanics, quantum optics or astrophysics.

Towards plasma accelerators

The team is now working on verifying the concept experimentally. “We are defining a strategy for an experimental demonstration and establishing cooperations with experimental specialists”, Vieira recounts. “It will be thrilling to observe generalised superradiance in reality, to examine how it will interact with matter and how we can exploit it to design novel experiments and gain new information.”

Simultaneously, the scientists are also working on transferring the new superradiance regime to plasma accelerators. These devices have a major advantage compared to conventional devices used to accelerate and steer particles: They are much smaller and therefore offer the possibility to construct very compact, even bench-sized light sources. However, until now, the quality and intensity of such plasma generated radiation was much lower than the light beams generated by conventional particle accelerators. “Superradiance has the potential to change that”, Vieira points out. If superradiance could be generated experimentally in plasma accelerators, this would allow for intense and compact X-ray sources, such as bench-sized free electron lasers or devices for cancer X-ray radiation therapy, and thereby bring research to universities and hospitals that is now only possible in a few large facilities worldwide. “Such a development would certainly boost therapy and research broadly, in material sciences, biology, and medicine.”

More info: https://prace-ri.eu/revolution-in-physics-scientists-have-identified-a-form-of-generalised-superradiation/


Source: PRACE

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The Annual SCinet Mandala

November 30, 2023

Perhaps you have seen images of Tibetan Buddhists creating beautiful and intricate images with colored sand. These sand mandalas can take weeks to create, only to be ritualistically dismantled when the image is finished. Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Reuters’ reported earlier this week that Alibaba “cut a Read more…

SC23: The Ethics of Supercomputing

November 29, 2023

Why should HPC practitioners care about ethics? And, what are our ethics in HPC? These questions were central to a lively discussion at the SC23 Birds-of-a-Feather (BoF) session: With Great Power Comes Great Responsib Read more…

Grace Hopper’s Big Debut in AWS Cloud While Graviton4 Launches

November 29, 2023

Editors Note: Additional Coverage of the AWS-Nvidia 65 Exaflop ‘Ultra-Cluster’ and Graviton4 can be found on our sister site Datanami. Amazon Web Services will soon be home to a new Nvidia-built supercomputer that Read more…

Give a Little (on Tuesday), Get a Lot

November 28, 2023

HPC is built on open source. While building HPC systems with "open plumbing" has enormous advantages, there can also be some challenges. As illustrated in the classic XKCD comic, the entire dependency tree of many usefu Read more…

AWS Solution Channel

Deploying AI/ML at the Edge with Omniflow’s Sustainable Smart Lamppost, NVIDIA, and AWS

Imagine a world where a lamppost does more than just illuminate streets; it actively contributes to a smarter, safer, and more sustainable community. Using Amazon Web Services (AWS) and NVIDIA technologies, Omniflow is turning this vision into a reality. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

re:Invent 2023: AWS Talks a Little Quantum, Showcases Error Correction Progress

November 28, 2023

Quantum computing held sway in the last few minutes of AWS senior vice president Peter DeSantis’ keynote yesterday at the AWS re:Invent 2023 conference, being held in Las Vegas this week. While scarce on details, DeSan Read more…

The Annual SCinet Mandala

November 30, 2023

Perhaps you have seen images of Tibetan Buddhists creating beautiful and intricate images with colored sand. These sand mandalas can take weeks to create, only Read more…

SC23: The Ethics of Supercomputing

November 29, 2023

Why should HPC practitioners care about ethics? And, what are our ethics in HPC? These questions were central to a lively discussion at the SC23 Birds-of-a-Fe Read more…

Grace Hopper’s Big Debut in AWS Cloud While Graviton4 Launches

November 29, 2023

Editors Note: Additional Coverage of the AWS-Nvidia 65 Exaflop ‘Ultra-Cluster’ and Graviton4 can be found on our sister site Datanami. Amazon Web Service Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

SCREAM wins Gordon Bell Climate Prize at SC23

November 21, 2023

The first Gordon Bell Prize for Climate Modeling was presented at SC23 in Denver. The award went to a team led by Sandia National Laboratories that had develope Read more…

SC23 BOF: Inclusivity Progress and Challenges

November 21, 2023

New to SC23 was a series of talks on Inclusivity topics. Sponsored by the Inclusivity Committee and open to all conference attendees, these 90-minute birds-of-a Read more…

Supercomputing 2023: Odds and Ends from the Show

November 20, 2023

This year's fantastic Supercomputing 2023 was back in full form. Attendees seemed to be glad that the show was back in Denver, which was a preferred destination Read more…

Material Simulation with Quantum Accuracy Wins 2023 ACM Gordon Bell Prize

November 20, 2023

Accurately calculating interactions among electrons has been a significant obstacle to reliable material exploration and design through computer modeling. Recen Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

SC23 Booth Videos

AMD @ SC23
AWS @ SC23
Altair @ SC23
CoolIT @ SC23
Cornelis Networks @ SC23
CoreHive @ SC23
DDC @ SC23
HPE @ SC23 with Justin Hotard
HPE @ SC23 with Trish Damkroger
Intel @ SC23
Intelligent Light @ SC23
Lenovo @ SC23
Penguin Solutions @ SC23
QCT Intel @ SC23
Tyan AMD @ SC23
Tyan Intel @ SC23
HPCwire LIVE from SC23 Playlist

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire