Six Argonne Researchers Receive DOE Early Career Research Program Awards

June 29, 2020

June 29, 2020 — Argonne scientists Michael Bishof, Maria Chan, Marco Govoni, Alessandro Lovato, Bogdan Nicolae and Stefan Wild are among 76 scientists across the nation awarded funding for their work through DOE’s Early Career Research Program.

Aerial view of Argonne National Laboratory. (Image by Argonne National Laboratory.)

The program, now in its eleventh year, awards each recipient with at least $500,000 per year for five years to advance their research. Offered by DOE’s Office of Science, the award is designed to bolster the nation’s scientific workforce by providing support to exceptional researchers during crucial early career years, when many scientists perform their most formative work. The awardees were selected from a large and competitive pool of university- and national laboratory-based applicants.

By bolstering our commitment to the scientific community, we invest in our nation’s next generation of innovators.” — Under Secretary for Science Paul Dabbar

The Department of Energy is proud to support funding that will sustain America’s scientific workforce and create opportunities for our researchers to remain competitive on the world stage,” said DOE Under Secretary for Science Paul Dabbar. ​By bolstering our commitment to the scientific community, we invest in our nation’s next generation of innovators.”

Michael Bishof, an assistant scientist in Argonne’s Physics division, is using quantum simulators to accelerate the impact of quantum information science on nuclear physics. (Image by Mark Lopez, Argonne National Laboratory.)

Michael Bishof

Quantum devices, such as quantum computers, provide a novel approach to solve significant problems in nuclear physics that cannot be solved using classical computers.

Such problems lie at the heart of nuclear physics: to fundamentally understand how properties of nuclei and their components, protons and neutrons, emerge from the underlying theory of quantum chromodynamics (QCD) — a framework to describe interactions between quarks and gluons, the building blocks of protons and neutrons. While general purpose quantum computers have demonstrated rapid progress in recent years, they are still many years away from addressing these questions.

Michael Bishof, a physicist in Argonne’s Physics division, aims to accelerate the impact of quantum information science on nuclear physics. Bishof’s goal is to develop a quantum simulator that is tailored to address specific challenges in this field. In contrast to a quantum computer, which maps each problem to a set of standard operations on quantum bits, or qubits, a quantum simulator manipulates an experimental apparatus to behave like the system under investigation.

The specific system Bishof will use for this project is an array of laser-trapped ytterbium atoms.

This experimental platform offers resource-efficient simulations of a simplified — but rich — model for interacting quarks, which will enable rapid progress toward simulations of poorly understood phenomena in nuclear physics and inform future simulations of more complex theories as quantum devices improve.

QCD presents a rather annoying puzzle to nuclear physics. It is impossible to directly observe the behavior of quarks and gluons, and not even the most powerful supercomputers can calculate how they work together to give protons, neutrons and nuclei the properties we observe in experiments,” said Bishof. ​Quantum devices could one day help solve this puzzle, and this research will accelerate progress toward that goal.”

Bishof’s research was selected for funding by DOE’s Office of Nuclear Physics.

Maria Chan, a scientist at Argonne’s CNM, is one of the 76 scientists across the nation to receive DOE​’s Early Career Research Program award for her work in computational materials science. (Image by Mark Lopez, Argonne National Laboratory.)

Maria Chan

To design new and improved materials for energy storage and conversion, scientists must understand and control existing materials. Such understanding depends on precise knowledge of the atomic and electronic structures of materials during synthesis and operation. Materials characterization using X-ray, electron, laser and scanning probes can, in principle, contribute to this knowledge, but interpreting the data is a substantial challenge.

Maria Chan, a scientist at Argonne’s Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility, is developing a theory-informed artificial intelligence (AI) and machine learning (ML) toolkit for accelerating the characterization of materials.

The AI and ML computational framework will allow researchers to determine atomic positions in real time from experimental characterization data. The user friendly toolkit is titled FANTASTX (Fully Automated Nanoscale To Atomistic Structure from Theory and eXperiment).

Implementing the FANTASTX framework involves developing and connecting approaches for the simulation of X-ray, electron, laser and scanning probe data; adopting and applying pattern recognition and computer vision algorithms; and constructing and training ML models to find the relationship between experimental data and the local atomic environment in a material sample.

Real-time determination of atomic-scale structural information will accelerate the understanding and design of nanoscale materials for energy applications and more.

The time is ripe to exploit the confluence of computational modeling, advanced characterization and AI to accelerate the way we investigate materials,” said Chan. ​Enabling real time feedback will go a long way towards autonomous experimentation, self-driving operando studies and materials discovery. Argonne — with its expertise in computational materials science, world-class characterization tools and AI and data — is an ideal place to carry out this research.”

Chan’s research was selected for funding by DOE’s Office of Basic Energy Sciences.

Marco Govoni, a scientist in Argonne’s MSD and CME, aims to create computational models to accelerate development of materials for quantum applications. (Image by University of Chicago.)

Marco Govoni

The development of quantum technologies that can store and manipulate information has the potential to provide groundbreaking discoveries that can transform computing technologies and generate a new class of nanoscale sensors.

Marco Govoni, a materials scientist in Argonne’s Materials Science division (MSD) and Center for Molecular Engineering (CME), aims to provide broad and predictive theoretical models to help accelerate the experimental examination of candidate materials for quantum applications.

The electronic states of defects in semiconductors are promising units of quantum information because they combine the quantum properties of isolated atoms with the convenience and scalability of a solid-state host system.

Govoni will develop new computational capabilities to model light-activated mechanisms within quantum materials where contradictory needs for isolation and accessibility must be reconciled in order to obtain robust quantum functionality.

I am grateful to the Department of Energy for the award. This is an incredible opportunity to solve a materials science challenge and explore new and exciting paths for computing, communication and sensing,” said Govoni.

The project will leverage advanced computational techniques to provide a quantitative description of a wide range of materials to better guide and understand experimental activities. In particular, Govoni will harness pre-exascale computing, quantum computing and AI, while taking advantage of Argonne’s expertise and world-class user facilities.

Govoni’s research was selected for funding by DOE’s Office of Basic Energy Sciences.

Alessandro Lovato, a physicist in Argonne’s Physics division, is developing novel computational methods to further scientific understanding of nuclear behavior. (Image by Alessandro Lovato, Argonne National Laboratory.)

Alessandro Lovato

Alessandro Lovato, a physicist in Argonne’s Physics division, aims to aid domestic nuclear experimental programs by providing a unified theoretical picture of atomic nuclei in terms of the individual interactions among their constituents: protons and neutrons.

Lovato is developing novel computational methods, such as artificial neural networks and deep learning algorithms, in order to probe these interactions.

The research project will produce breakthrough developments of existing computational analysis methods, enabling the study of nuclei with a higher number of protons and neutrons than is currently possible with limited, existing quantum Monte Carlo computational approaches.

I will leverage forthcoming exascale computing resources, including Argonne’s Aurora — set to be deployed in 2021 — as well as machine learning techniques, to foster our understanding of short- and long-range dynamics of atomic nuclei,” said Lovato.

Testing the structure of atomic nuclei and their reactions at low energies is the primary focus of several domestic experimental facilities, including the Argonne Tandem Linac Accelerator System (ATLAS), a DOE Office of Science User Facility; the National Superconducting Cyclotron Laboratory; and the Facility for Rare Isotope Beams at Michigan State University. Experiments at Thomas Jefferson Laboratory and the forthcoming Electron-Ion Collider at DOE’s Brookhaven National Laboratory also probe the internal structure and behavior of the nucleus.

Besides covering many areas in nuclear physics, this research has critical applications in high-energy physics, specifically on the study of neutrino oscillation. It will also impact astrophysics, as nuclear dynamics is imprinted in the gravitational waves and neutrino emission signals of merging neutron stars.

Lovato’s research was selected for funding by DOE’s Office of Nuclear Physics.

Bogdan Nicolae is a computer scientist in Argonne’s MCS division whose research will enable scientists to extract meaningful insight from large data sets. (Image by Argonne National Laboratory.)

Bogdan Nicolae

Bogdan Nicolae is a computer scientist in Argonne’s Mathematics and Computer Science (MCS) division. His project, called DataStates, is aimed at efficiently storing and processing the massive datasets generated at warp speeds by modern supercomputers and scientific instruments. In this context, the need to capture, search and reuse datasets on the fly as they are calculated is amplified by the increasing convergence between simulations and the application of machine learning to discovery science.

Current data management approaches do not have the required data manipulation capabilities or the scalability, performance and space efficiency to perform well on leadership-class computing systems. Nicolae’s research will involve development of a new data model in which users do not interact with a data service to read and write datasets directly, but instead, tag their datasets with certain attributes or properties. Implementing the model will automatically add snapshots of the datasets — called data states — into the lineage, providing a data history that can be used to search, reuse and understand the evolution of the datasets.

Supercomputers and scientific instruments are generating more data at an accelerated rate, making it increasingly difficult to efficiently store and manipulate data at a large scale,” said Nicolae. ​To address this problem, DataStates explores transformative data models and techniques at the intersection of high-performance computing, artificial intelligence and big data analytics. I am grateful to DOE for this opportunity and excited to leverage the facilities we have here at Argonne, where Aurora, one of the first exascale supercomputers, will arrive in 2021.”

The project will improve research in multiple areas, allowing scientists to extract meaningful insight from the data deluge, improving data reproducibility, encouraging collaboration and development of new algorithms and ideas, and facilitating advances in AI.

Nicolae’s research was selected for funding by DOE’s Office of Advanced Scientific Computing Research.

Stefan Wild is a computational mathematician in Argonne’s Mathematics and Computer Science division whose research addresses complex design, decision and control problems. (Image by Mark Lopez, Argonne National Laboratory.)

Stefan Wild

The growing interest in applying ML and AI methods in the discovery sciences has expanded optimization problems. Stefan Wild is a computational mathematician in Argonne’s MCS division, whose research addresses complex design, decision and control problems.

Whereas traditional mathematical optimization methods are limited by requirements for derivative information, Wild’s research centers on methods that can help scientists train and calibrate models, reduce empirical risk and design better experiments, even when such requirements cannot be met.

Application of these methods raises numerous challenges. Scientific phenomena are complex, accurate simulations are expensive and research often requires characterization at multiple size and time scales in a variety of high-performance computing environments.

Wild is undertaking an ambitious project to address these challenges by developing a set of novel algorithms — the set of rules or ​recipe” that a computer uses to solve problems — and numerical methods that can be used to improve the efficiency of scientific machine learning. His project will establish a robust mathematical foundation for scientific machine learning and optimization in increasingly complex high-performance computing environments and inspire use of the novel mathematic methods in diverse science domains.

I’m excited to have this opportunity to tackle these challenging mathematical problems and am grateful for being in an environment with so many exceptional colleagues,” Wild said.

Wild’s research was selected for funding by DOE’s Office of Advanced Scientific Computing Research.

To view all the graphics, visit https://www.anl.gov/article/six-argonne-researchers-receive-doe-early-career-research-program-awards

About Argonne’s Center for Nanoscale Materials

The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://​sci​ence​.osti​.gov/​U​s​e​r​-​F​a​c​i​l​i​t​i​e​s​/​U​s​e​r​-​F​a​c​i​l​i​t​i​e​s​-​a​t​-​a​-​G​lance.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.


Source: Savannah Mitchem and Mary Fitzpatrick, Argonne National Laboratory

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This