Software Framework Designed to Accelerate Drug Discovery Wins IEEE International Scalable Computing Challenge

July 30, 2018

July 30, 2018 — Solutions to many real-world scientific and engineering problems—from improving weather models and designing new energy materials to understanding how the universe formed—require applications that can scale to a very large size and high performance. Each year, through its International Scalable Computing Challenge (SCALE), the Institute of Electrical and Electronics Engineers (IEEE) recognizes a project that advances application development and supporting infrastructure to enable the large-scale, high-performance computing needed to solve such problems.

Shantenu Jha, chair of Brookhaven Lab’s Center for Data-Driven Discovery, and his team from Rutgers University and University College London designed a software framework for accurately and rapidly calculating how strongly drug candidates bind to their target proteins. The framework is aimed at solving the real-world problem of drug design—currently a lengthy and expensive process—and could have an impact on personalized medicine. Image courtesy of BNL.

This year’s winner, “Enabling Trade-off Between Accuracy and Computational Cost: Adaptive Algorithms to Reduce Time to Clinical Insight,” is the result of a collaboration between chemists and computational and computer scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Rutgers University, and University College London. The team members were honored at the 18th IEEE/Association for Computing Machinery (ACM) International Symposium on Cluster, Cloud and Grid Computing held in Washington, DC, from May 1 to 4.

“We developed a numerical computation methodology for accurately and rapidly evaluating the efficacy of different drug candidates,” said team member Shantenu Jha, chair of the Center for Data-Driven Discovery, part of Brookhaven Lab’s Computational Science Initiative. “Though we have not yet applied this methodology to design a new drug, we demonstrated that it could work at the large scales involved in the drug discovery process.”

Drug discovery is kind of like designing a key to fit a lock. In order for a drug to be effective at treating a particular disease, it must tightly bind to a molecule—usually a protein—that is associated with that disease. Only then can the drug activate or inhibit the function of the target molecule. Researchers may screen 10,000 or more molecular compounds before finding any that have the desired biological activity. But these “lead” compounds often lack the potency, selectivity, or stability needed to become a drug. By modifying the chemical structure of these leads, researchers can design compounds with the appropriate drug-like properties. The designed drug candidates then move along the development pipeline to the preclinical testing stage. Of these candidates, only a small fraction enters the clinical trial phase, and only one ends up becoming an approved drug for patient use. Bringing a new drug to the market can take a decade or longer and cost billions of dollars.

Overcoming drug design bottlenecks through computational science

Recent advances in technology and knowledge have resulted in a new era of drug discovery—one that could significantly reduce the time and expense of the drug development process. Improvements in our understanding of the 3D crystal structures of biological molecules and increases in computing power are making it possible to use computational methods to predict drug-target interactions.

In particular, a computer simulation technique called molecular dynamics has shown promise in accurately predicting the strength with which drug molecules bind to their targets (binding affinity). Molecular dynamics simulates how atoms and molecules move as they interact in their environment. In the case of drug discovery, the simulations reveal how drug molecules interact with their target protein and change the protein’s conformation, or shape, which determines its function.

However, these prediction capabilities are not yet operating at a large-enough scale or fast-enough speed for pharmaceutical companies to adopt them in their development process.

“Translating these advances in predictive accuracy to impact industrial decision making requires that on the order of 10,000 binding affinities are calculated as quickly as possible, without the loss of accuracy,” said Jha. “Producing timely insight demands a computational efficiency that is predicated on the development of new algorithms and scalable software systems, and the smart allocation of supercomputing resources.”

Jha and his collaborators at Rutgers University, where he is also a professor in the Electrical and Computer Engineering Department, and University College London designed a software framework to support the accurate and rapid calculation of binding affinities while optimizing the use of computational resources. This framework, called the High-Throughput Binding Affinity Calculator (HTBAC), builds upon the RADICAL-Cybertools project that Jha leads as principal investigator of Rutgers’ Research in Advanced Distributed Cyberinfrastructure and Applications Laboratory (RADICAL). The goal of RADICAL-Cybertools is to provide a suite of software building blocks to support the workflows of large-scale scientific applications on high-performance-computing platforms, which aggregate computing power to solve large computational problems that would otherwise be unsolvable because of the time required.

In computer science, workflows refer to a series of processing steps necessary to complete a task or solve a problem. Especially for scientific workflows, it is important that the workflows are flexible so that they can dynamically adapt during runtime to provide the most accurate results while making efficient use of the available computing time. Such adaptive workflows are ideal for drug discovery because only the drugs with high binding affinities should be further evaluated.

“The trade-off desired between the required accuracy and computational cost (time) changes throughout the drug’s discovery as the process moves from screening to lead selection and then lead optimization,” said Jha. “A significant number of compounds must be inexpensively screened to eliminate poor binders before more accurate methods are needed to discriminate the best binders. Providing the quickest time-to-solution requires monitoring the progress of the simulations and basing decisions about continued execution on scientific significance.”

In other words, it would not make sense to continue simulations of a particular drug-protein interaction if the drug weakly binds the protein as compared to the other candidates. But it would make sense to allocate additional computational resources if a drug shows a high binding affinity.

Supporting adaptive workflows at the large scales characteristic of drug discovery programs requires advanced computational capabilities. HTBAC provides such support through a flexible middleware software layer that enables the adaptive execution of algorithms. Currently, HTBAC supports two algorithms: enhanced sampling of molecular dynamics with approximation of continuum solvent (ESMACS) and thermodynamic integration with enhanced sampling (TIES). ESMACS, a computationally cheaper but less rigorous method than TIES, computes the binding strength of one drug to its target protein on the basis of molecular dynamics simulations. By contrast, TIES compares the relative binding affinities of two different drugs to the same protein.

“ESMACS provides a rapid quantitative approach sensitive enough to determine binding affinities so we can eliminate poor binders, while TIES provides a more accurate method for investigating good binders as they are refined and improved,” said Jumana Dakka, a second-year PhD student at Rutgers and a member of the RADICAL group.

In order to determine which algorithm to execute, HTBAC analyzes the binding affinity calculations at runtime. This analysis informs decisions about the number of concurrent simulations to perform and whether stimulation steps should be added or removed for each drug candidate investigated.

Read the full article by following this link.


Source: Brookhaven National Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This