Spack, a Lab-Developed ‘App Store for Supercomputers,’ Becoming Standard-Bearer

September 20, 2018

Sept. 20, 2018 — Spack, a Lawrence Livermore National Laboratory-developed open source package manager optimized for high performance computing (HPC), is making waves throughout the HPC community, including internationally, as evidenced by a recent tour of European HPC facilities by the tool’s developers.

In July, Lawrence Livermore National Laboratory computer scientists (from left) Todd Gamblin and Greg Becker met with HPC Application Expert Massimiliano Culpo at the École polytechnique fédérale de Lausanne (EPFL) in Lausanne, Switzerland. Culpo is an EPFL scientist and longtime Spack contributor who uses Spack to manage software on EPFL’s supercomputers.

Despite its niche status, Spack (short for Supercomputer PACKage manager), is one of the most popular pieces of software the Lab has ever released to the GitHub open source community. Described by its developers as “an app store for supercomputers,” Spack was started by LLNL computer scientist Todd Gamblin in 2013 and has quickly become the go-to package manager at LLNL and Argonne, Oak Ridge, Los Alamos and Sandia national laboratories, as well as Lawrence Berkeley’s National Energy Research Scientific Computing Center (NERSC). Not only is it being used on the Department of Energy’s (DOE) latest and greatest flagship systems, Oak Ridge’s Summit and LLNL’s Sierra, it’s also become the official deployment tool for the Exascale Computing Project, the “glue” for coordinating exascale software releases and deploying them to HPC facilities.

“It’s been pretty amazing,” Gamblin said of Spack’s rise to broad acceptance. “It wrecks my inbox — I get 200 emails a day about Spack from GitHub and the mailing list — but the momentum is great. We continue to drive development, and we review features and merge bug fixes, but the community helps tremendously with new ideas, new features and regular maintenance. I don’t think we could sustain a project of this scale without their help.”

Perhaps nothing has epitomized Spack’s growing reach more than the month of July, which began with Gamblin presenting Spack at the Platform for Advanced Scientific Computing (PASC) Conference in Basel, Switzerland, piquing interest from France’s Atomic Energy Institute (CEA) and other institutions. From there, Gamblin took a day trip to the Technical Institute of Munich (TUM), where he discussed potential collaborations with former LLNL computer scientist Martin Schulz, who is now TUM’s chair professor for Computer Architecture and Parallel Systems, as well as staff at the affiliated Leibniz Supercomputing Centre (LRZ). LRZ is deploying a 26-petaflop supercomputer called SuperMUC-NG and is planning to use Spack to set up the machine’s software.

Gamblin then drove to Lausanne, Switzerland, to visit École polytechnique fédérale de Lausanne (EPFL) on July 6, where he was joined by fellow LLNL computer scientist Greg Becker, who is part of the Spack team and has been instrumental to its development. While there, the pair met with longtime Spack contributor Massimiliano Culpo, who uses Spack to manage software on EPFL’s supercomputers. From Lausanne, they drove to Paris for a visit at CEA facilitated by LLNL computer scientist Edgar Leon, who is on a yearlong visiting assignment at the facility. CEA is interested in using Spack to modernize its developer workflow, Gamblin said, and the group discussed adding features to support the institute’s work and ways that CEA and LLNL could work together on future Spack features.

After enjoying a festive evening in Paris as the French celebrated their win over Belgium in the World Cup, Gamblin returned to the States, and Becker went on to London and the Atomic Weapons Establishment (AWE), which is exploring package deployment with Spack. Becker spent more than a week at AWE and met with British scientists involved in the Joint Working Group, a treaty-based high performance computing partnership between LLNL and the U.K.’s Science and Technology Facilities Council aimed at improving industry, promoting collaborations and boosting economic competitiveness.

Gamblin and Becker said the trip was useful in picturing what other HPC sites are attempting to do with Spack, figuring out what features to focus on next and starting a conversation about new collaborations. It also left them thinking they needed to expand community outreach. Since the meeting, Gamblin and collaborators from CEA and LRZ have had a birds-of-a-feather session accepted at the upcoming Supercomputing Conference 18 (SC18) in Dallas, where they will have a larger face-to-face community meeting. Gamblin and others will also hold a Spack tutorial at SC18.

“I think we got a lot of feedback that was some version of ‘Wow, this fills a use case that nothing else really does for me, and it would be great if it had these features, too,’” Becker said. “People definitely weren’t shy about letting us know what they hoped we were planning on doing or what they were planning on submitting, but they were very clear that they had looked at everything they could find out there and there wasn’t anything else that was going this direction.”

Spack has come a long way in the few short years since Gamblin first started coding it on weekends in coffee shops. He built the first version, a Python-based program that would automatically build libraries on the Lab’s Linux machines, to help his summer students by freeing them up to do their work. Subsequent Lab Hackathons attracted additional contributors and more packages, and after Gamblin presented a paper on Spack at Supercomputing Conference (SC15), interest began pouring in from other Department of Energy national laboratories, academia and companies with HPC resources.

“After SC15 my inbox exploded,” Gamblin said. “There were days where I would check my mail and think ‘how am I going to sustain this?’”

Through the open source repository GitHub, Spack has attracted hundreds of users who have added software packages (Spack now supports 2,800 of them), and HPC centers like NERSC, EPFL, Fermilab and the European Organization for Nuclear Research (CERN) have contributed significant features. Gamblin, Becker, and Peter Scheibel (GS) work to evaluate contributions from all of these organizations. The three also have appeared on HPC-related podcasts and conferences, including tutorials at SC16 and SC17, to spread the word about Spack’s usefulness and versatility.

“It’s like the app store for HPC, but the tricky bit of HPC is that we want 15 different configurations of the same app at once,” Becker said. “One of the key things for Spack is that the underlying model allows us to satisfy that need.”

The reasons for Spack’s popularity among the HPC community, Gamblin said, are twofold. Most system package managers require users to run with superuser privileges, which is fine for most developers because they own their machines. But HPC machines are shared, he explained, and Spack can install a lot of low-level software as a regular user in their home directory.

“For the HPC space it definitely fills a gap,” Gamblin said. “People needed something that could install custom packages in their own directory. The fact that you can run as a user is a big deal. There are other systems, like EasyBuild, that also have traction in this space, but they are very much targeted at system administrators rather than computational scientists. Spack gives you additional flexibility that both administrators and developers need.”

Another advantage, Gamblin said, is that other package managers that targeted developers are specific to a certain programming language, such as npm for Javascript, or Bundler for Ruby. HPC software crosses languages (C++, Python, Fortran etc.) so the relationships between packages are inherently more complex.

“Integrating so many packages into one application from so many different software ecosystems makes HPC particularly hard,” Gamblin said. “HPC software is more complicated today than 10 years ago. There are more dependencies, libraries and integration, so the need became more acute.”

Also working in Spack’s favor is that a lot of HPC labor involves porting software over to new machines, as LLNL is currently doing with Sierra. While most package managers are specific to one machine, Spack packages are templated, so if developers write a package for one machine, Becker said the likelihood is higher that it will work on another machine.

“If you get on a platform that no one’s ever tried to build this on before, Spack will at least make a best effort,” Becker said. “If that platform is really weird, it might not get very far, but in many cases, the best effort works.” This is the flexibility that Spack offers that other systems don’t.

Today, Spack is used by 40-50 people at LLNL, mostly developers in Livermore Computing (LC) and other parts of the Lab, as well as code teams who are using it as the interface to install scientific packages to run on Linux cluster machines, including Blue Gene/Q and Sierra. Spack has reduced the time needed to deploy complex codes on certain Lab supercomputers from weeks to days.

“We’re moving toward using Spack exclusively to deploy user-facing software in LC, but we’re moving from our current process, which uses Spack to generate RPM packages for the system package manager,” Becker said. “We have a fair number of people in the development environment group who use Spack to feed packages into that process. I think we’re collectively using it at every level in the hierarchy: single-user, application teams and system deployments.”

Gamblin and the Spack team, including its outside contributors, are working on new improvements and features with hopes of releasing version 1.0 in November, possibly at SC18. Gamblin said that in the coming year, they plan to add features that enable facilities to deploy extremely large suites of software easily, as well as features that simplify the workflow for individual developers working on multiple projects at once. The team is calling these features “Spack Stacks” and “Spack Environments,” respectively.

While optimized for supercomputers, Spack also can be used on home computers and laptops, where Gamblin and others see the potential for wider acceptance. Gamblin said he wants to include more machine learning libraries, to allow users to combine those workflows with HPC using the same tool. The Spack team also is looking to focus on greater reproducibility from one stack to another, polishing workflows and working on better support for binary software packages.

Additionally, Gamblin said he would like to expand community engagement and explore a steering committee that could govern future Spack-related decisions. Gamblin, Becker and others want Spack to eventually be part of the general deployment strategy for libraries across DOE. Spack has been adopted as the deployment tool for the U.S. Exascale Computing Project’s (ECP’s) software stack, and other DOE national labs are gradually joining in the fray.

“It’s nice to have industry standards where possible, and it would be great if we could fill that role in terms of getting everyone on the same page,” Becker said. “Spack is already good at the individual level of avoiding duplication of work and if we could keep on extending that so that large HPC sites are able to share work with each other, that would be great as well.”

“I’d like it if Spack were the way people use supercomputers and if it were part of everyone’s development environment. Good package management helps to grease the wheels,” Gamblin added. “The dream is to take the grunt work out of HPC: users get on a machine, assemble a stack of hundreds of libraries in minutes, then get back to focusing on the science.”

For more about open source software from LLNL, visit the web.


Source: LLNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire