Spotting Clouds on the Horizon: AI Resolves Uncertainties in Climate Projections

July 18, 2019

July 18, 2019 — Climate researchers look into the future to project how much the planet will warm in coming decades — but they often rely on decades-old software to conduct their analyses.

This legacy software architecture is difficult to update with new methodologies that have emerged in recent years. So a consortium of researchers is starting from scratch, writing a new climate model that leverages AI, new software tools and NVIDIA GPUs.

Scientists from Caltech, MIT, the Naval Postgraduate School and NASA’s Jet Propulsion Laboratory are part of the initiative, named the Climate Modeling Alliance — or CliMA.

“Computing has advanced quite a bit since the ‘60s,” said Raffaele Ferrari, oceanography professor at MIT and principal investigator on the project. “We know much more than we did at that time, but a lot was hard-coded into climate models when they were first developed.”

Building a new climate model from the ground up allows climate researchers to better account for small-scale environmental features, including cloud cover, rainfall, sea ice and ocean turbulence.

These variables are too geographically miniscule to be precisely captured in climate models, but can be better approximated using AI. Incorporating the AI’s projections into the new climate model could reduce uncertainties by half compared to existing models.

The team is developing the new model using Julia, an MIT-developed programming language that was designed for parallelism and distributed computation, allowing the scientists to accelerate their climate model calculations using NVIDIA V100 Tensor Core GPUs onsite and on Google Cloud.

As the project progresses, the researchers plan to use supercomputers like the GPU-powered Summit system at Oak Ridge National Labs as well as commercial cloud resources to run the new climate model — which they hope to have running within the next five years.

AI Turns the Tide

Climate scientists use physics and thermodynamics equations to calculate the evolution of environmental variables like air temperature, sea level and rainfall. But it’s incredibly computationally intensive to run these calculations for the entire planet. So in existing models, researchers divide the globe into a grid of 100-square-kilometer sections.

They calculate every 100 km block independently, using mathematical approximations for smaller features like turbulent eddies in the ocean and low-lying clouds in the sky — which can measure less than one kilometer across. As a result, when stringing the grid back together into a global model, there’s a margin of uncertainty introduced in the output.

Small uncertainties can make a significant difference, especially when climate scientists are estimating for policymakers how many years it will take for average global temperature to rise by more than two degrees Celcius. Due to the current levels of uncertainty, researchers project that, with current emission levels, this threshold could be crossed as soon as 2040 — or as late as 2100.

“That’s a huge margin of uncertainty,” said Ferrari. “Anything to reduce that margin can provide a societal benefit estimated in trillions of dollars. If one knows better the likelihood of changes in rainfall patterns, for example, then everyone from civil engineers to farmers can decide what infrastructure and practices they may need to plan for.”

A Deep Dive into Ocean Data

The MIT researchers are focusing on building the ocean elements of CliMA’s new climate model. Covering around 70 percent of the planet’s surface, oceans are a major heat and carbon dioxide reservoir. To make ocean-related climate projections, scientists look at such variables as water temperature, salinity and velocity of ocean currents.

One such dynamic is turbulent streams of water that flow around in the ocean like “a lot of little storms,” Ferrari said. “If you don’t account for all that swirling motion, you strongly underestimate how the ocean is absorbing heat and carbon.”

Using GPUs, researchers can narrow the resolution of their high-resolution simulations from 100 square kilometers down to one square kilometer, dramatically reducing uncertainties. But these simulations are too expensive to directly incorporate into a climate model that looks decades into the future.

That’s where an AI model that learns from fine-resolution ocean and cloud simulations can help.

“Our goal is to run thousands of high-resolution simulations, one for each 100-by-100 kilometer block, that will resolve the small-scale physics presently not captured by climate models,” said Chris Hill, principal research engineer at MIT’s earth, atmospheric and planetary sciences department.

These high-resolution simulations produce abundant synthetic data. That data can be combined with sparser real-world measurements, creating a robust training dataset for an AI model that estimates the impact of small-scale physics like ocean turbulence and cloud patterns on large-scale climate variables.

CliMA researchers can then plug these AI tools into the new climate model software, improving the accuracy of long-term projections.

“We’re betting a lot on GPU technology to provide a boost in compute performance,” Hill said.

MIT hosted in June a weeklong GPU hackathon, where developers — including Hill’s team as well as research groups from other universities — used the CUDA parallel computing platform and the Julia programming language for projects such as ocean modeling, plasma fusion and astrophysics.

For more on how AI and GPUs accelerate scientific research, see the NVIDIA higher education page. Find the latest NVIDIA hardware discounts for academia on our educational pricing page.


Source: Isha Salian, NVIDIA 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Researchers Propose New Solution to Quantum Internet Transmission Problem

July 22, 2024

Getting intact qubits from here-to-there is the basic challenge for any quantum internet scheme. Now, scientists from the University of Chicago, Stanford University, and California Institute of Technology have introduced Read more…

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch bits onto glass with a ceramic coating. The “grey ceramic� Read more…

Weekly Wire Roundup: July 15-July 19, 2024

July 19, 2024

It's summertime (for most of us), and the HPC-related headlines aren't as plentiful as they once were. But not everything has to happen at high tide-- this week still had some waves! Idaho National Laboratory's Bitter Read more…

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Researchers Propose New Solution to Quantum Internet Transmission Problem

July 22, 2024

Getting intact qubits from here-to-there is the basic challenge for any quantum internet scheme. Now, scientists from the University of Chicago, Stanford Univer Read more…

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire