Spotting Clouds on the Horizon: AI Resolves Uncertainties in Climate Projections

July 18, 2019

July 18, 2019 — Climate researchers look into the future to project how much the planet will warm in coming decades — but they often rely on decades-old software to conduct their analyses.

This legacy software architecture is difficult to update with new methodologies that have emerged in recent years. So a consortium of researchers is starting from scratch, writing a new climate model that leverages AI, new software tools and NVIDIA GPUs.

Scientists from Caltech, MIT, the Naval Postgraduate School and NASA’s Jet Propulsion Laboratory are part of the initiative, named the Climate Modeling Alliance — or CliMA.

“Computing has advanced quite a bit since the ‘60s,” said Raffaele Ferrari, oceanography professor at MIT and principal investigator on the project. “We know much more than we did at that time, but a lot was hard-coded into climate models when they were first developed.”

Building a new climate model from the ground up allows climate researchers to better account for small-scale environmental features, including cloud cover, rainfall, sea ice and ocean turbulence.

These variables are too geographically miniscule to be precisely captured in climate models, but can be better approximated using AI. Incorporating the AI’s projections into the new climate model could reduce uncertainties by half compared to existing models.

The team is developing the new model using Julia, an MIT-developed programming language that was designed for parallelism and distributed computation, allowing the scientists to accelerate their climate model calculations using NVIDIA V100 Tensor Core GPUs onsite and on Google Cloud.

As the project progresses, the researchers plan to use supercomputers like the GPU-powered Summit system at Oak Ridge National Labs as well as commercial cloud resources to run the new climate model — which they hope to have running within the next five years.

AI Turns the Tide

Climate scientists use physics and thermodynamics equations to calculate the evolution of environmental variables like air temperature, sea level and rainfall. But it’s incredibly computationally intensive to run these calculations for the entire planet. So in existing models, researchers divide the globe into a grid of 100-square-kilometer sections.

They calculate every 100 km block independently, using mathematical approximations for smaller features like turbulent eddies in the ocean and low-lying clouds in the sky — which can measure less than one kilometer across. As a result, when stringing the grid back together into a global model, there’s a margin of uncertainty introduced in the output.

Small uncertainties can make a significant difference, especially when climate scientists are estimating for policymakers how many years it will take for average global temperature to rise by more than two degrees Celcius. Due to the current levels of uncertainty, researchers project that, with current emission levels, this threshold could be crossed as soon as 2040 — or as late as 2100.

“That’s a huge margin of uncertainty,” said Ferrari. “Anything to reduce that margin can provide a societal benefit estimated in trillions of dollars. If one knows better the likelihood of changes in rainfall patterns, for example, then everyone from civil engineers to farmers can decide what infrastructure and practices they may need to plan for.”

A Deep Dive into Ocean Data

The MIT researchers are focusing on building the ocean elements of CliMA’s new climate model. Covering around 70 percent of the planet’s surface, oceans are a major heat and carbon dioxide reservoir. To make ocean-related climate projections, scientists look at such variables as water temperature, salinity and velocity of ocean currents.

One such dynamic is turbulent streams of water that flow around in the ocean like “a lot of little storms,” Ferrari said. “If you don’t account for all that swirling motion, you strongly underestimate how the ocean is absorbing heat and carbon.”

Using GPUs, researchers can narrow the resolution of their high-resolution simulations from 100 square kilometers down to one square kilometer, dramatically reducing uncertainties. But these simulations are too expensive to directly incorporate into a climate model that looks decades into the future.

That’s where an AI model that learns from fine-resolution ocean and cloud simulations can help.

“Our goal is to run thousands of high-resolution simulations, one for each 100-by-100 kilometer block, that will resolve the small-scale physics presently not captured by climate models,” said Chris Hill, principal research engineer at MIT’s earth, atmospheric and planetary sciences department.

These high-resolution simulations produce abundant synthetic data. That data can be combined with sparser real-world measurements, creating a robust training dataset for an AI model that estimates the impact of small-scale physics like ocean turbulence and cloud patterns on large-scale climate variables.

CliMA researchers can then plug these AI tools into the new climate model software, improving the accuracy of long-term projections.

“We’re betting a lot on GPU technology to provide a boost in compute performance,” Hill said.

MIT hosted in June a weeklong GPU hackathon, where developers — including Hill’s team as well as research groups from other universities — used the CUDA parallel computing platform and the Julia programming language for projects such as ocean modeling, plasma fusion and astrophysics.

For more on how AI and GPUs accelerate scientific research, see the NVIDIA higher education page. Find the latest NVIDIA hardware discounts for academia on our educational pricing page.


Source: Isha Salian, NVIDIA 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire