Stuart Parkin Awarded the King Faisal Prize for Science 2021 for his Spintronics Innovations

February 18, 2021

Feb. 18, 2021 — The director at the MPI of Microstructure Physics receives the prestigious prize for his discoveries and innovations in the field of spintronics.

Stuart Parkin’s inventions in the field of spintronics have revolutionised computer technology, making it possible to increase the data density on hard disks by a factor of 1,000. With his research on thin magnetic layers, he created the basis at IBM on which the company developed a new read-and-write-head for hard disks. This reads data reliably even from very densely packed magnetic storage materials. This laid the foundation for big data, i.e. the handling of large amounts of data. Not the least because of this, it has become so easy to share films and pictures via networks or computer clouds, making them available to groups of networked computers.

Stuart Parkin © Marco Warmuth, TGZ Halle

“Our goal is to develop components that work with spins or ions, for example, for technology beyond today’s microelectronics,” says Stuart Parkin. “But it can take ten to twenty years from the discovery of a new physical phenomenon to its technical implementation. I think it’s important to have a long-term view when investing in science, to be able to do exciting research that seems unlikely or impossible.”

In 2014, Stuart Parkin moved from IBM to the Max Planck Institute of Microstructure Physics in Halle where he is researching spin currents and continues to work part time for IBM researching next generation memory technologies. Today, Parkin and his team are working on a component that could replace magnetic hard drives. Magnetic hard disks store 70 per cent of all data, but they work mechanically and therefore consume a lot of energy. Parkin is researching to build a so-called magnetic racetrack memory that works without any mechanics. This is based on the latest developments in spintronics, Parkin’s field of research. Spintronics exploits the spin of electrons, which turns them into small magnetic units. Information can be stored in these magnetic units. In a racetrack memory, these small magnets are moved at several kilometres per second. This makes it possible to build data storage devices that store 100 times as much information as today’s hard drives, are a million times faster and require 50 per cent less energy. Nick Donofrio, IBM Fellow Emeritus and EVP Innovation & Technology (retired), says, “As with Parkin’s other inventions, I have no doubt that Racetrack Memory too will be a great success and have a major impact on society”.

And that’s exactly what was decisive for the King Faisal Foundation’s award: “Professor Stuart Stephen Parkin is receiving the prize in recognition of his fundamental discoveries and innovations in the field of spintronics, which have led to a 1,000-fold increase in the storage capacity of magnetic disk drives. He developed practical spin-valve-based technologies that transformed human access to data and enabled the “Big Data Revolution”. This in turn enabled machine learning and artificial intelligence to solve intractable problems that depend on rapid access to vast amounts of data, such as predictions of the impact of climate change. Parkin also discovered novel non-volatile magnetoresistive random access memory (MRAM), which was launched last year.”

“Stuart Parkin’s award-winning contributions to spintronics have been instrumental in enabling us to process huge amounts of data today,” adds Klaus Blaum, Vice President of the Max Planck Society. “And with his current research on completely new memory concepts, such as racetrack memory, he continues to decisively drive the development of new techniques for the computers of the future.”

About the prize

The King Faisal International Prize for Science has been awarded once a year since 1984 by the King Faisal Foundation in Riyadh (Saudi Arabia) to scientists for outstanding research results. Every four years, a scientist from the field of physics is honoured. The prize is endowed with $200,000 US dollars and presented with a gold medal.

Prof. Dr. Stuart Parkin

Stuart Parkin is Director of the Nanosystems from Spins, Ions and Electrons Department (NISE) at the Max Planck Institute of Microstructure Physics (MPI-MSP) and a Professor of Physics at the Martin Luther University, Halle, Germany, since 2015. Parkin has been a leader in the field of spintronics for the past 30 years. Prior to moving to Germany, Parkin was a scientist at IBM Research, where he was a scientist and Fellow at IBM Research in San Jose, California. Parkin has made seminal discoveries in novel spintronic concepts and materials that underlie the information age. His research interests include spintronic materials and devices for advanced sensor, memory, and logic applications, oxide thin-film heterostructures, topological metals, exotic superconductors, and cognitive devices. Parkin’s discoveries in spintronics enabled a more than 10,000-fold increase in the storage capacity of magnetic disk drives. For his work that thereby enabled the “big data” world of today, Parkin was awarded the Millennium Technology Award from the Technology Academy Finland in 2014. Parkin is a Fellow/ Member of: Royal Society (London), Royal Academy of Engineering, National Academy of Sciences, National Academy of Engineering, German National Academy of Science – Leopoldina, Royal Society of Edinburgh, Indian Academy of Sciences, and TWAS – academy of sciences for the developing world. Parkin has received numerous awards including the American Physical Society International Prize for New Materials (1994); Europhysics Prize for Outstanding Achievement in Solid State Physics (1997); 2009 IUPAP Magnetism Prize and Néel Medal; 2012 von Hippel Award – Materials Research Society; 2013 Swan Medal – Institute of Physics (London); Alexander von Humboldt Professorship − International Award for Research (2014); ERC Advanced Grant – SORBET (2015).


Source: Max Planck Institute of Microstructure Physics

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire