Study Demonstrates Potential for AI and Whole Genome Sequencing

July 12, 2017

NEW YORK, July 11, 2017 — In a study published today in the July 11, 2017 issue of Neurology Genetics, an official journal of the American Academy of Neurology, researchers at the New York Genome Center (NYGC), The Rockefeller University and other NYGC member institutions, and IBM (NYSE: IBM) have illustrated the potential of IBM Watson for Genomics to analyze complex genomic data from state-of-the-art DNA sequencing of whole genomes. The study compared multiple techniques – or assays – used to analyze genomic data from a glioblastoma patient’s tumor cells and normal healthy cells.

The proof of concept study used a beta version of Watson for Genomics technology to help interpret whole genome sequencing (WGS) data for one patient. In the study, Watsonwas able to provide a report of potential clinically actionable insights within 10 minutes, compared to 160 hours of human analysis and curation required to arrive at similar conclusions for this patient.

The study also showed that WGS identified more clinically actionable mutations than the current standard of examining a limited subset of genes, known as a targeted panel. WGS currently requires significantly more manual analysis, so combining this method with artificial intelligence could help doctors identify potential therapies from WGS for more patients in less time.

Interpretation of genome sequencing data is a significant challenge because of the volume of genomic data to sift through, as well as the large, growing body of research on molecular drivers of cancer and potential targeted therapies. This informatics challenge is often a critical bottleneck when dealing with deadly cancers such as glioblastoma, with a median survival of less than 15 months following diagnosis.

“Our partnership has explored cutting-edge challenges and opportunities in harnessing genomics to help cancer patients. We provide initial insights into two critical issues: what clinical value can be extracted from different commercial and academic cancer genomic platforms, and how to think about scaling access to that value,” noted the study’s Principal Investigator, Robert Darnell, MD, PhD, Robert and Harriet Heilbrunn Professor and Senior Attending Physician at The Rockefeller University and Founding Director of the New York Genome Center.

In the study, NYGC researchers and bioinformatics experts analyzed DNA and RNA from a glioblastoma tumor specimen and DNA from the patient’s normal blood, and compared potentially actionable insights to those derived from a commercial targeted panel that had previously been performed. The whole genome and RNA sequencing data were analyzed by a team of bioinformaticians and oncologists at the NYGC as well as a beta version of IBM Watson for Genomics, an automated system for prioritizing somatic variants and identifying potential therapies.

The beta version of Watson for Genomics processed abstracts and in some cases, full text articles from PubMed, a comprehensive source of more than 27 million citations for biomedical literature. With this information, the NYGC and Watson collaborated to identify gene alterations that can be therapeutically targeted.

“This study documents the strong potential of Watson for Genomics to help clinicians scale precision oncology more broadly,” said Vanessa MicheliniWatson for Genomics Innovation Leader, IBM Watson Health. “Clinical and research leaders in cancer genomics are making tremendous progress towards bringing precision medicine to cancer patients, but genomic data interpretation is a significant obstacle, and that’s where Watson can help.”

The study was part of the NYGC’s and its Institutional Founding Members’ ongoing efforts to advance the use of next-generation sequencing, particularly WGS, in precision medicine. The NYGC and its founding member institutions are conducting additional studies involving Watson to help accelerate the discovery of potentially actionable sequence variants in various types of cancer, including an ongoing study that involves DNA and RNA from a larger cohort of glioblastoma patients, and a study of 200 patients with different types of cancer.

This study, conducted from 2015-2016, utilized a beta version of Watson for Genomics, which is now commercially available for genomic data interpretation through partnerships with Quest Diagnostics, Illumina, or as a cloud-based software for clinicians and researchers. Watson for Genomics is also used in clinical practice at the VA Health System.

About the New York Genome Center
The New York Genome Center is an independent, nonprofit academic research institution at the forefront of transforming biomedical research with the mission of advancing clinical care. A collaboration of premier academic, medical and industry leaders across the globe, the New York Genome Center has as its goal to translate genomic research into the development of new treatments, therapies and therapeutics against human disease. NYGC member organizations and partners are united in this unprecedented collaboration of technology, science and medicine, designed to harness the power of innovation and discoveries to advance genomic services. Their shared objective is the acceleration of medical genomics and precision medicine to benefit patients around the world. For more information, visit our website at http://www.nygenome.org.

Member institutions include: Albert Einstein College of Medicine, American Museum of Natural History, Cold Spring Harbor Laboratory, Columbia University, Hospital for Special Surgery, The Jackson Laboratory, Memorial Sloan Kettering Cancer Center, Icahn School of Medicine at Mount Sinai, NewYork-Presbyterian Hospital, The New York Stem Cell Foundation, New York University, Northwell Health, Princeton UniversityThe Rockefeller University, Roswell Park Cancer Institute, Stony Brook University, Weill Cornell Medicine and IBM.

About IBM Watson Health
Watson is the first commercially available cognitive computing capability representing a new era in computing. The system, delivered through the cloud, analyzes high volumes of data, understands complex questions posed in natural language, and proposes evidence-based answers. Watson continuously learns, gaining in value and knowledge over time, from previous interactions. In April 2015, the company launched IBM Watson Health and the Watson Health Core cloud platform (now Watson Platform for Health). The new unit will help improve the ability of doctors, researchers and insurers to innovate by surfacing insights from the massive amount of personal health data being created and shared daily. The Watson Platform for Health can mask patient identities and allow for information to be shared and combined with a dynamic and constantly growing aggregated view of clinical, research and social health data. For more information on IBM Watson, visit: ibm.com/watson. For more information on IBM Watson Health, visit: ibm.com/watsonhealth.


Source: IBM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This