Summit Completes System Acceptance

December 20, 2018

Dec. 20, 2018 — A year-long acceptance process for the 200-petaflop, IBM AC922 Summit supercomputer at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) is complete. Acceptance testing ensures that the supercomputer and its file system meet the functionality, performance, and stability requirements agreed upon by the facility and the vendor.

To successfully complete acceptance, the Oak Ridge Leadership Computing Facility (OLCF) worked closely with system vendor IBM to test hundreds of system requirements and fix any resulting hardware, software, and network issues.

“Systems like Summit are usually serial number one. There is nothing like Summit on the market, and this was the first time a system of its scale was tested,” said Verónica Melesse Vergara, OLCF high-performance computing (HPC) support specialist and Summit acceptance lead.

In June and November 2018, Summit ranked first on the biannual TOP500 list of the world’s most powerful supercomputers based on the High Performance Linpack benchmark. Summit’s storage system, Alpine, also ranked first as the world’s fastest storage system on the November IO-500 list.

Even as Summit debuted on the international rankings list in June, OLCF team members were preparing for full system acceptance. After testing system hardware and benchmark requirements in spring 2018, the final months of acceptance focused on preparing to run a full workload of scientific applications.

Acceptance testing was a collaborative effort between OLCF, IBM, and partners NVIDIA, Mellanox, and Red Hat. Summit’s architecture includes 4,608 computing nodes, each comprising two IBM Power9 CPUs and six NVIDIA Volta GPUs connected with a Mellanox InfiniBand interconnect. Summit runs on a Linux operating system from Red Hat. Alpine is a 250-petabyte IBM Spectrum Scale parallel file system.

“All five organizations worked closely together to find, prioritize, and repair issues, which is one of the goals of acceptance: to validate and fix things now so the system is productive for scientists,” said Jim Rogers, National Center for Computational Sciences director of computing and facilities and Summit technical procurement officer (TPO).

The end of acceptance testing signals the beginning of the machine’s scientific mission. Users from the OLCF Early Science Program and the DOE Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program will begin work on Summit in January 2019.

Step one: functionality

The three main steps of acceptance testing ensure the machine is ready for full production, answering the basic questions: Can the machine work well? Can it successfully run the users’ scientific codes? And can it work well and run scientific codes at full production?

During functionality tests, all system components and features must run successfully or, if they fail, recover as intended.

“Functionality tests basically determine whether the machine works well,” said HPC Operations Group team lead Don Maxwell, who has worked on OLCF acceptance teams for 13 years.

At the end of functionality tests, staff members are certain they can compile and run jobs on the system—an important requirement for beginning the second step of performance tests.

“We make sure all of the software, including the application launcher, the scheduler, compilers, programming models, and more, is performing as expected,” Melesse Vergara said.

Rogers, who assessed whether the machine met acceptance requirements in his role as TPO, said Summit’s acceptance plan was modeled after previous OLCF system acceptance plans, including those for the facility’s Titan and Jaguar supercomputers. However, Summit comes with a new generation of complexities.

“These machines are getting so complicated that we’re putting more of an emphasis on the depth and breadth of testing,” Rogers said. “We now have about 30 sensor points on each node, so we can closely measure and better understand how the machine is running.”

Sensors directly on the node enable OLCF staff to correlate data points such as cooling temperatures or network speed with performance measures, such as data transfer or GPU utilization. In this way, the sensors not only serve a purpose during acceptance; they will also be used for the lifetime of the machine to help operators predict and plan for maintenance.

“Predictive maintenance is just something that comes with machines of this scale.” Rogers said. “The sensors are a long-term provision to make sure the machine operates efficiently with less repair time and a means to prevent failures.”

Step two: performance

To meet performance requirements, Summit needed to deliver an average 5-times speedup for scientific applications compared to OLCF’s previous scientific workhorse, the 27-petaflop Titan system.

“We run scientific applications in isolation to obtain a baseline performance metric for that application,” Melesse Vergara said. “We also run several test sizes to better understand performance of each application on the system.”

Early results from Gordon Bell Prize finalists demonstrate that some codes are already seeing speedups well over this mark.

File system performance is also essential to system performance. Alpine performance requirements included a data transfer speed of 2.5 terabytes per second.

“The file system is the entry and exit point for Summit’s acceptance. It is critical that the file system works in order for users to run on the supercomputer,” said Dustin Leverman, OLCF HPC storage engineer and Alpine acceptance lead.

Step three: stability

To ensure that any one failure among Summit’s many processors and nodes does not impact Summit users, the stability test monitors the resilience of the system under real conditions.

“The stability test gauges how the system is going to operate under high utilization, so we can be confident that it is ready to turn over to users,” Rogers said.

Stability testing is the final and most strenuous leg of acceptance testing because it simulates a realistic workload that floods the system with thousands of jobs from different scientific applications.

“During stability testing, we run jobs on one node all the way up to the full size of the system,” Maxwell said.

To effectively monitor the performance of all these jobs, OLCF uses a “test harness” that tracks the status of each job as it is deployed and executed on the system. The stability test takes place over two weeks. At the same time, the functionality tests and performance tests that were already completed must run concurrently to test the resiliency of the system.

Now that Summit has passed acceptance, scientists can begin work in earnest. And the OLCF acceptance team?

“We’re already applying lessons learned from Summit to acceptance plans for OLCF’s future Frontier  system, just like we did with Jaguar and Titan,” Maxwell said.

ORNL is managed by UT-Battelle, LLC for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov.


Source: OLCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire