Blue Waters Supercomputer Changing Genetic Medicine in Africa

June 14, 2016

June 14 — The National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign is helping change the way genetic medicine is researched and practiced in Africa.

Members of the Blue Waters team recently made it possible to discover genomic variants in over 300 deeply sequenced human samples to help construct a genotyping chip specific for African populations.

NCSA’s Blue Waters is the largest and most powerful open access supercomputer in the world, and is unique in being housed at an academic institution. It is designed to perform very wide computations involving tens of thousands of nodes and Petabytes of distributed memory, as frequently required in physics, manufacturing and meteorology. However, due to its very large, fast storage system, it has also become important for computational genomics.

Much of what is known about the genetics of diseases is based on people with European ancestry. The Consortium for Human Heredity and Health in Africa — H3Africa — aims to change that by promoting health research that takes into account the genetic diversity of African populations.

Additionally, African populations face unique health challenges, according to Dr. Victor Jongeneel, director of the High-Performance Biological Computing (HPCBio) group at Illinois.

“The H3Africa project is looking at the relationship between genetics and susceptibility to disease in African populations,” Dr. Jongeneel says. “A large amount of time has been spent looking at these relationships in Caucasians and East Asians. But, much of that research is irrelevant in the African context.”

People in Africa do not die of the same diseases as those in the West. While “lifestyle diseases” common in the West — cardiovascular disease, stroke and type 2 diabetes — do also affect people in Africa, infectious and viral diseases, as well as parasitic diseases, are more common. For example, genetic mutations that arose in West African populations and protected them against malaria were carried by African Americans and predispose them to sickle cell disease.

Genomic variation plays a large role in disease predisposition and drug response. Thus, it is important to develop tools for genomic variant discovery specifically in people of African descent, who have been underrepresented in many worldwide genetic diversity measurement projects.

The project

The Genome Analysis Working Group from the H3Africa consortium partnered with H3ABioNet and the Wellcome Trust Sanger Institute to construct a genotyping chip to test for genomic variants found specifically in African populations. The chip will be a tool for rapid and inexpensive genotyping of individuals, to aid in the studies of human evolution and to identify genomic bases of disease.

“Despite many challenges, The H3Africa consortium has been very successful at recruiting people all across the African continent,” Dr. Jongeneel says, “including very remote rural areas that have been previously under-sampled.”

The data include publicly available sequence data from the 1000 Genomes project, and over 2,000 low-depth whole genome sequences from the Sanger Institute’s African Genome Variation Project. An additional set of 348 samples were sent for deep sequencing at the Baylor College of Medicine funded through a supplement from the NIH.

A computational challenge

These are fairly large sample sizes. Genomic variant calling analysis in a project of this size is always computationally expensive and requires access to large disk storage. Thankfully, H3Africa is a partnership between many different institutions, all contributing expertise, software and hardware to a common goal. Thus, a group of bioinformaticians in the University of Cape Town, led by Professor Nicola Mulder, partnered with HPCBio to perform this analysis on Blue Waters. The Mulder team, together with Dr Manj Sandhu’s team at the Wellcome Trust Sanger Institute, developed the computational workflow to extract genomic variants from the 348 samples sequenced at Baylor. HPCBio helped instantiate this workflow on Blue Waters, and the NCSA teams monitored performance on the machine.

Due to its international visibility and importance for global health, the project was granted a “strategic” allocation on Blue Waters, says Dr. Liudmila Mainzer, senior research scientist with NSCA and the HPCBio group. “This enabled the South African team to complete the analysis in a timely manner, using nearly 250,000 node-hours, even with extensive use of backfill and walltime accuracy discounts. The total disk footprint was nearly 600 TB, while only 200 TB total was available on the Cape Town cluster.”

The Blue Waters team has been instrumental to the success of this project. Extremely high uptime, rapid resolution of failures (in one case under 20 minutes) and close collaboration on data transfers between the US and South Africa have made the support team an integral part of the project. “Without their involvement and professionalism, this work would have been very difficult to complete. For our project, the Blue Waters team was as important as the compute, storage and networking resources,” says Dr. Mainzer.

“The analysis for the African project was quite elaborate due to multiple quality control steps, to ensure that the results would be appropriate for subsequent population variant calling,” Mainzer says. “We had to do a bit of work to optimize the workflow for the architecture of Blue Waters.” Liudmila was involved in data management, scalability issues, and making sure that any problems were quickly resolved by coordinating with the Blue Waters team.

“Another aspect, both challenging and important, was monitoring the execution of the workflow,” says Gloria Rendon, a research programmer and analyst at HPCBio and NCSA. “Since data were analyzed in large batches; it was very important to track progress of execution, to detect problems and to notify the user of those events. We needed to make sure that the workflow could recover from failure gracefully, so that the user could resume without having to start the time-consuming analysis all over again.” Rendon was involved in instantiating the workflow for Blue Waters and also in data management, scalability and other aspects of workflow optimization.

In a true multidisciplinary collaboration, teams all across NCSA got involved with this project, from the networking team resolving data transfer issues, to the storage team managing and backing up the data, software and application support team helping debug the workflow, and systems engineering team adjusting the aggregate job launcher to meet the job scheduling needs.

The Blue Waters system management team demonstrated rapid problem resolution skills. Once, Mainzer was in an HPCBio group meeting when a bioinformatician in South Africa alerted that some jobs failed inexplicably. Immediately, she reached out to the systems team, and Victor Anisimov, a member of the Blue Waters application support team, found the root of the problem, had it fixed, and advised when it was safe to restart the jobs. The turnaround time on this solution was only 20 minutes.

Advancement for both sides

Both the South African bioinformaticians and NCSA benefited from working together. For South Africa, it meant finding more efficient ways to facilitate the transfer of data.

“We engaged in debugging the issues of data transfers over the network to South Africa, and found better configuration settings that could be applied to their system,” says Jim Glasgow, a senior system engineer with the storage enabling technology group. “It was definitely a learning process for both sides, and reflects our usual approach in engaging with other institutions that don’t have the large system capabilities we have here. We are always interested in collaborating and sharing our experiences with other sites.”

However, working with the South African bioinformaticians to solve problems with data transfer also led teams at NCSA to discover tools they may be able to use in the future.

“The challenges we faced doing the data transfers led directly to learning and evaluating community data transfer tools such as bbftp. We were able to test and verify functionality and performance of these tools and we now have alternatives to our existing high-performance transfer method (globus-url-copy via Globus Online) should the need arise,” says Galen Arnold, a system engineer with NCSA and a member of the Blue Waters application team.

Additionally, the project provided an excellent use case and motivation for new software development. Dr. Craig Steffen, senior research scientist in the Blue Waters team, developed software that facilitates projects with large collections of small files to effectively utilize storage on a machine like Blue Waters, which is designed for projects that use large chunks of data, like physics simulations. A version of this software will be available for public use in May 2016.

The H3Africa collaborative project also allowed NCSA to test and improve their system’s performance, according to Sharif Islam, senior systems engineer with the Blue Waters system.

“We learned how to balance the genomics workload for optimized file system performance without impacting other users. Blue Waters has the capability to isolate certain network and file system traffic, to ensure high throughput,” says Islam. “Working on this project helped us test and properly utilize this capability. However, at the same time we discovered its limitations, as other data and computationally intensive workloads constantly utilize the system resources.”

The project also showed how scheduling policies on Blue Waters helped accomplish the computations in the time period allotted.

“That is actually a testament to the quality of scheduling policies on the Blue Waters machine,” Dr. Mainzer says. “They allowed optimal placement of our jobs on the computational nodes, amidst the very wide multi-scale physics jobs. This reduced the queue wait and helped us push the workload faster, while also improving the overall utilization of the system.”

“The execution of the workflow was a scheduling challenge in many ways; fortunately we were able to use tools produced by NCSA, such as the Anisimov launcher, that proved to be crucial in the ultimate success of the project,” Rendon says.

Being part of the H3Africa project provided insight not only on computational achievements, but also spoke to the social impact, according to Glasgow.

“It’s just nice to see us engaged in projects with this kind of scope and reach and potential for improvements on a really socially grand scale,” says Glasgow. “It helps us see the apparent value of our technical work — that’s what we’re here to do.”


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., is announcing a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascade Lake-AP) in t Read more…

By Tiffany Trader

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance family on Google Compute Engine. The instances are powered by t Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial research. Can you discuss key developments in recent years? Read more…

By Steve Conway, Hyperion

The Barcelona Supercomputing Center Offers a Virtual Tour of Its MareNostrum Supercomputer

July 6, 2020

With the COVID-19 pandemic continuing to threaten the world and disrupt normal operations, facility tours remain a little difficult to operate, with many supercomputing centers having shuttered facility tours for visitor Read more…

By Oliver Peckham

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance fam Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This