Catalyst Supercomputer at LLNL Available for Collaborative Research

May 7, 2014

May 7 — Catalyst, a first-of-a-kind supercomputer at Lawrence Livermore National Laboratory (LLNL), is available to industry collaborators to test big data technologies, architectures and applications.

Developed by a partnership of CrayIntel and Lawrence Livermore, this Cray CS300 high performance computing (HPC) cluster is available for collaborative projects with industry through Livermore’s High Performance Computing Innovation Center (HPCIC).

“Over the next decade, global data volume is forecasted to reach more than 35 zettabytes,” (a zettabyte is a trillion gigabytes) said Fred Streitz, director of the HPCIC. “That enormous amount of unstructured data provides an opportunity. But how do we extract value and inform better decisions out of that wealth of raw information?”

A resource for the National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing (ASC) program, the 150 teraflop/s (trillion floating operations per second) Catalyst cluster has 324 nodes, 7,776 cores and employs the latest-generation 12-core Intel Xeon E5-2695v2 processors. Catalyst runs the NNSA-funded Tri-lab Open Source Software (TOSS) that provides a common user environment across NNSA Tri-lab clusters (Los Alamos, Sandia and Lawrence Livermore national labs).

“The opportunity to work with Cray and Intel to design and deploy Catalyst, a novel computing platform optimized for HPC-end applications, has been very exciting,” said Robin Goldstone, Livermore HPC Solutions architect. “We have modified the Cray CS300 architecture in ways that make Catalyst an outstanding HPC platform for data-intensive computing.”

Catalyst features include 128 gigabytes (GB) of dynamic random access memory (DRAM) per node, 800 GB of non-volatile memory (NVRAM) per compute node, 3.2 terabytes (TB) of NVRAM per Lustre router node, and improved cluster networking with dual rail Quad Data Rate (QDR-80) Intel TrueScale fabrics. The addition of an expanded node local NVRAM storage tier based on PCIe high-bandwidth Intel Solid State Drives (SSD) allows for the exploration of new approaches to application check-pointing, in-situ visualization, out-of-core algorithms and big data analytics. NVRAM is familiar to anyone who uses USB sticks or an MP3 player; it is simply memory that is persistent and that remains on files even when the power is off, hence “non-volatile.”

Deployed in October 2013, the Catalyst architecture already has begun to provide insights into the kind of technologies the ASC program will require over the next decade to meet high performance simulation and big data computing mission needs. The increased storage capacity of the system (in both volatile and nonvolatile memory) represents the major departure from classic simulation-based computing architectures common at DOE laboratories and opens new opportunities for exploring the potential of combining floating point focused capability with data analysis in one environment. The machine’s expanded DRAM and fast, persistent NVRAM are well suited to a broad range of big data problems including bioinformatics, business analytics, machine learning and natural language processing.

Jonathan Allen, a Lawrence Livermore bioinformatics scientist, is working on new methods to rapidly detect and characterize pathogenic organisms such as viruses, bacteria or fungi in a biological sample.

“We’re working on developing scalable analysis tools for next generation sequencing, in particular metagenomic sequencing,” Allen said. “By comparing short genetic fragments in a query dataset against a large searchable index of genomes, we can make determinations about the potential threat an organism poses to human health.”

Traditional technologies and storage limitations made it challenging to rapidly search a database of reference genomes as more organisms were sequenced and more variants in the population of an organism were included. With Catalyst’s unique architecture, Allen and his team are able to store very large reference databases of genomes in memory and execute expansive analyses with higher resolution.

“We were able to do a metagenomic analysis on a fairly large sample in several hours on a single desktop. With Catalyst, we can process many hundreds of equal size in about the same time.”

Catalyst also will serve to host very large models for video analytics and machine learning.

“YouTube claims that 100 hours of video are uploaded to its website every minute,” explained Doug Poland, computational engineer working on video analytics. “As the fastest-growing type of content on the Internet, consumer-produced videos are a wealth of information about the world that’s essentially untapped.”

Yet current tools are unable to search through the richness of video elements such as visual, audio and motion, and associated metadata like semantic tags and geo-coordinates. Poland and his team are looking to build more complex models that consider the sum of those features, and that can be recognized in real-time for user-specific search needs.

“Catalyst allows us to explore entirely new deep learning architectures that could have a huge impact on video analytics as well as broader application to big data analytics.”

“Our purpose is to use Catalyst as a test bed to develop optimization strategies for data-intensive computing,” Streitz said. “We believe that advancing big data technology is a key to accelerating the innovation that underpins our economic vitality and global competiveness.”

Companies interested in access to Catalyst are invited to respond to the posted Notice of Opportunity through the Federal Business Opportunities website and visit the HPC Innovation Center website.

Source: Donald B. Johnston, Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputer Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputer Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This