Catalyst Supercomputer at LLNL Available for Collaborative Research

May 7, 2014

May 7 — Catalyst, a first-of-a-kind supercomputer at Lawrence Livermore National Laboratory (LLNL), is available to industry collaborators to test big data technologies, architectures and applications.

Developed by a partnership of CrayIntel and Lawrence Livermore, this Cray CS300 high performance computing (HPC) cluster is available for collaborative projects with industry through Livermore’s High Performance Computing Innovation Center (HPCIC).

“Over the next decade, global data volume is forecasted to reach more than 35 zettabytes,” (a zettabyte is a trillion gigabytes) said Fred Streitz, director of the HPCIC. “That enormous amount of unstructured data provides an opportunity. But how do we extract value and inform better decisions out of that wealth of raw information?”

A resource for the National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing (ASC) program, the 150 teraflop/s (trillion floating operations per second) Catalyst cluster has 324 nodes, 7,776 cores and employs the latest-generation 12-core Intel Xeon E5-2695v2 processors. Catalyst runs the NNSA-funded Tri-lab Open Source Software (TOSS) that provides a common user environment across NNSA Tri-lab clusters (Los Alamos, Sandia and Lawrence Livermore national labs).

“The opportunity to work with Cray and Intel to design and deploy Catalyst, a novel computing platform optimized for HPC-end applications, has been very exciting,” said Robin Goldstone, Livermore HPC Solutions architect. “We have modified the Cray CS300 architecture in ways that make Catalyst an outstanding HPC platform for data-intensive computing.”

Catalyst features include 128 gigabytes (GB) of dynamic random access memory (DRAM) per node, 800 GB of non-volatile memory (NVRAM) per compute node, 3.2 terabytes (TB) of NVRAM per Lustre router node, and improved cluster networking with dual rail Quad Data Rate (QDR-80) Intel TrueScale fabrics. The addition of an expanded node local NVRAM storage tier based on PCIe high-bandwidth Intel Solid State Drives (SSD) allows for the exploration of new approaches to application check-pointing, in-situ visualization, out-of-core algorithms and big data analytics. NVRAM is familiar to anyone who uses USB sticks or an MP3 player; it is simply memory that is persistent and that remains on files even when the power is off, hence “non-volatile.”

Deployed in October 2013, the Catalyst architecture already has begun to provide insights into the kind of technologies the ASC program will require over the next decade to meet high performance simulation and big data computing mission needs. The increased storage capacity of the system (in both volatile and nonvolatile memory) represents the major departure from classic simulation-based computing architectures common at DOE laboratories and opens new opportunities for exploring the potential of combining floating point focused capability with data analysis in one environment. The machine’s expanded DRAM and fast, persistent NVRAM are well suited to a broad range of big data problems including bioinformatics, business analytics, machine learning and natural language processing.

Jonathan Allen, a Lawrence Livermore bioinformatics scientist, is working on new methods to rapidly detect and characterize pathogenic organisms such as viruses, bacteria or fungi in a biological sample.

“We’re working on developing scalable analysis tools for next generation sequencing, in particular metagenomic sequencing,” Allen said. “By comparing short genetic fragments in a query dataset against a large searchable index of genomes, we can make determinations about the potential threat an organism poses to human health.”

Traditional technologies and storage limitations made it challenging to rapidly search a database of reference genomes as more organisms were sequenced and more variants in the population of an organism were included. With Catalyst’s unique architecture, Allen and his team are able to store very large reference databases of genomes in memory and execute expansive analyses with higher resolution.

“We were able to do a metagenomic analysis on a fairly large sample in several hours on a single desktop. With Catalyst, we can process many hundreds of equal size in about the same time.”

Catalyst also will serve to host very large models for video analytics and machine learning.

“YouTube claims that 100 hours of video are uploaded to its website every minute,” explained Doug Poland, computational engineer working on video analytics. “As the fastest-growing type of content on the Internet, consumer-produced videos are a wealth of information about the world that’s essentially untapped.”

Yet current tools are unable to search through the richness of video elements such as visual, audio and motion, and associated metadata like semantic tags and geo-coordinates. Poland and his team are looking to build more complex models that consider the sum of those features, and that can be recognized in real-time for user-specific search needs.

“Catalyst allows us to explore entirely new deep learning architectures that could have a huge impact on video analytics as well as broader application to big data analytics.”

“Our purpose is to use Catalyst as a test bed to develop optimization strategies for data-intensive computing,” Streitz said. “We believe that advancing big data technology is a key to accelerating the innovation that underpins our economic vitality and global competiveness.”

Companies interested in access to Catalyst are invited to respond to the posted Notice of Opportunity through the Federal Business Opportunities website and visit the HPC Innovation Center website.

Source: Donald B. Johnston, Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This