Jülich’s Upgraded Supercomputer – JUWELS – Setting New Benchmarks

November 16, 2020

Jülich, Nov. 16, 2020 — Forschungszentrum Jülich’s upgraded supercomputer JUWELS is now capable of 85 petaflops. This is equivalent to 85 quadril-lion computing operations per second or the computing power of more than 300,000 modern PCs. Thanks to its new booster module, JUWELS is able to massively expand the application limits of simulations and also offers the strongest platform in Europe for the use of artificial intelligence (AI).

Developed by Forschungszentrum Jülich, Atos, a global leader in digital transformation headquartered in France, the Munich-based supercomputing specialist ParTec, and the accelerated computing platform company NVIDIA, JUWELS is the fast-est computer in Europe. It currently ranks number 7 on the TOP500 list of the world’s fastest computers published today. The Jülich supercomputer financed by the national Gauss Centre for Supercomputing takes third place in the cur-rent Green500 and is the world’s most energy-efficient supercomputer in the highest performance class.

“We see supercomputing not only as the subject of our research, but above all as a powerful tool that helps us to address complex research topics together with our partners from science and industry,” said Prof. Wolfgang Marquardt, Chairman of the Board of Directors of Forschungszentrum Jülich.

“With its fully expanded JUWELS system, Forschungszentrum Jülich provides scien-tists from a wide range of institutions and scientific disciplines with access to super-computing capacities of the highest level. At the same time, however, the system also demonstrates our responsible action with respect to the ever increasing energy demand for the provision of computing power.”

Bridging the gap between simulations and reality

JUWELS Supercomputer, JSC, FZJ

“A very recent example in the current COVID-19 crisis is supporting simulations for drug development,” said Prof. Thomas Lippert, head of the Jülich Supercomputing Centre (JSC). “Only the computing power of the booster enables our researchers to simulate the processes before, during and after a potential drug meets a receptor or protein realistically enough.”

Another current project is the detailed simulation of surface, earth, and groundwater movements. With the new JUWELS booster module, researchers are for the first time able to perform simulations with the required fine resolution, depicting details such as individual slopes or river corridors.

Intelligent task sharing – highest energy efficiency

JUWELS is based on a highly flexible modular architecture developed by For-schungszentrum Jülich together with European and international partners. “With its powerful, highly efficient graphics processors, the booster module is designed for extremely computationally intensive applications that can be easily processed in par-allel on a large number of computing cores,” said Dr. Dorian Krause, who is respon-sible for setting up and operating the extraordinarily complex system at Jülich. “JUWELS is also the leader in terms of energy efficiency among the top 10 fastest computers in the world.”

JUWELS is one of the first supercomputers worldwide using NVIDIA A100 Tensor Core GPUs, based on the NVIDIA Ampere architecture. The booster unites around 12 million CUDA cores (FP64) across its more than 3,700 graphics processors, con-nected via an NVIDIA Mellanox HDR 200Gb/s InfiniBand high-performance network. The booster alone reaches a peak performance of 73 petaflops. With nearly 2.5 exa-flops of peak AI performance, i.e. 2.5 trillion computing operations per second, it of-fers the strongest platform in Europe for the use of artificial intelligence (AI).

“The key highlight of JUWELS is that both modules – the previous “cluster module”, which works with fast processors (CPUs), and the booster module with its GPUs – are very tightly interconnected,” says Bernhard Frohwitter, CEO of the Munich-based supercomputing specialist ParTec. The interaction of the modules controls ParTec’s modular software system ParaStation Modulo, a world-leading development from Germany. “With ParaStation Modulo, JUWELS can dynamically access CPUs and GPUs within a code at will and thus optimize the calculation.”

“Both modules come from Atos, based on our BullSequana X infrastructure, whose 100% highly-efficient water-cooled patented DLC (Direct Liquid Cooling) solution contributes significantly to the low energy consumption of the system.” explains Agnès Boudot, Senior Vice President, Head of HPC & Quantum at Atos. “Atos’ de-sign ensures that the fullest computational power issued from CPU and GPU blades is translated into users’ applications.”

Prepared for future technologies

Prof. Thomas Lippert sees the JUWELS system also as a milestone on the path to-wards the European exascale computer, which is set to be launched in 2023. The construction and operation of such a supercomputer is regarded throughout the world as the next major step in supercomputing. With a computing power of at least one exaflops, i.e. 1 trillion double precision floating point operations per second, it would be at least 12 times faster than the JUWELS booster.

“JUWELS’ modular architecture, the design of its computing nodes, its network, in-frastructure, and cooling system as well as its software architecture can be trans-ferred to an exascale computer in the next years, while keeping costs and energy consumption at a reasonable level,” said Thomas Lippert. As far as the future of su-percomputing is concerned, thanks to its modular design, JUWELS is perfectly pre-pared to integrate future technologies being researched at Forschungszentrum Jülich — for example quantum computer modules or neuromorphic modules that work on the model of the human brain.

Funded by federal and state governments

The acquisition of the booster is being funded by the federal government and the state of North Rhine-Westphalia. JSC operates JUWELS as a member of the Gauss Centre for Supercomputing (GCS), the association of Germany’s national supercom-puting centers: three computing centers of Forschungszentrum Jülich (JSC), the Ba-varian Academy of Sciences (LRZ) and the University of Stuttgart (HLRS).

Computing time on JUWELS is allocated on a national and European level after ap-plication and scientific evaluation. GCS and Forschungszentrum Jülich are supported by the Federal Ministry of Education and Research (BMBF) and the Ministry of Cul-ture and Science of the State of North Rhine-Westphalia as well as the Ministry of Science, Research and the Arts of Baden-Württemberg and the Bavarian State Min-istry of Education, Science and the Arts.

Infobox: Jülich concept

The modular concept realized at the Jülich Supercomputing Centre (JSC) was developed as part of a long-term cooperation with the Munich software company Par-Tec. It provides a platform for a supercomputer consisting of several specialized modules that can be dynamically combined as required using uniform software. Since 2011, European partners from industry and research have been developing and testing the first modular design systems under Jülich leadership, and the con-cept has been continuously expanded in the EU-funded DEEP research projects.

The booster is the result of a collaboration between the experts at JSC and the supercomputer manufacturer Atos (France), the supercomputing specialist ParTec (Germany), and the accelerated computing and networking platform company, NVID-IA (USA).


Source: Jülich Supercomputing Centre

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response w Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire