The tool has led to the discovery of several genes responsible for root traits. Bucksch cites a recent study of Striga hermanthica resistance in sorghum as the kind of outcome he hopes for users of DIRT/3D. Striga, a parasitic weed, regularly destroys sorghum harvests in huge areas of Africa.

The lead researcher, Dorota Kawa, a post-doc at UC Davis, found that there are some forms of sorghum with Striga-resistant roots. She derived traits from these roots using DIRT/2D, and then mapped the traits to genes that regulate the release of chemicals in the roots that triggers Striga germination in plants.

DIRT3D improves the quality of the root characterizations done with DIRT/2D and captures features that are only accessible when scanned in 3D.

The challenges facing farmers are expected to rise in coming years, with more draughts, higher temperatures, low-soil fertility, and the need to grow food in less greenhouse-gas producing ways. Roots that are adapted to these future conditions will help ease pressure on the food supply.

“The potential, with DIRT/3D, is helping us live on a hotter planet and managing to have enough food,” Bucksch said. “That is always the elephant in the room. There could be a point where this planet can’t produce enough food for everybody anymore, and I hope we, as a science community, can avoid this point by developing better drought adapted and CO2 sequestering plants.”

Click here to learn more.


Source: Aaron Dubrow, TACC