Supercomputer Simulations Show New Target in HIV-1 Replication

August 9, 2018

Aug. 9, 2018 — HIV-1 replicates in ninja-like ways. The virus slips through the membrane of vital white blood cells. Inside, HIV-1 copies its genes and scavenges parts to build a protective bubble for its copies. Scientists don’t understand many of the details of how HIV-1 can fool our immune system cells so effectively. The virus infects 1.2 million people in the U.S. and 37 million people worldwide in 2018. Supercomputers helped model a key building block in the HIV-1 protective capsid, which could lead to strategies for potential therapeutic intervention in HIV-1 replication.

The naturally-occurring compound IP6 (red) facilitates the formation and assembly of HIV-1 structural proteins, results from XSEDE Stampede2 and Anton2 systems show. Image courtesy of Perilla et al.

Scientists found the naturally-occurring compound a hexakisphosphate (IP6) promotes both assembly and maturation of HIV-1. “We discovered, in collaboration with other researchers, that HIV uses this small molecule to complete its function,” said Juan R. Perilla, Department of Chemistry and Biochemistry, University of Delaware. “This is a molecule that’s extremely available in human cells and in other mammalian cells. HIV has evolved to make use of these small molecules present in our cells to essentially be infectious.” Perilla co-authored the study in the journal Nature in August 2018.

Perilla ran simulations of inositol phosphate interactions with HIV structural proteins CA-CTD-SP1 using NAMD through allocations on XSEDE, the Extreme Science and Engineering Environment, funded by the National Science Foundation (NSF). “XSEDE provides a unique framework which allows us to use computational resources that are tailored to the needs of a particular scientific problem. In addition, we benefit from the HPC training opportunities provided by XSEDE which allows us to develop novel analysis tools,” Perilla said.

The allocation included time on the Anton2 system of the Pittsburgh Supercomputing Center to run atomistic simulations of bound IP6. “Anton2 enabled us to perform long-scale simulations to test the stability of the immature capsid assembly‘ and IP6,” Perilla said.

Through XSEDE, the Stampede2 system at the Texas Advanced Computing Center ran NAMD simulations of the Inositol phosphates IP3, IP4, IP5 and their interactions with HIV proteins CA-CTD-SP1. “What Stampede2 allowed us to do is establish what the molecular interactions are between the HIV proteins and this small molecule and to test the hypothesis that it was stabilizing a particular part of the protein using molecular dynamics,” said Juan Perilla.

“I think Stampede2 is a great machine, and it’s extremely beneficial to the scientific community to have a resource like that available on a merit-based system. What I would like the public to know is that it’s important that these large-scale machines are available. They are not just a replacement of a small cluster. These machines really enable new science. If you didn’t have machines of this scale, you couldn’t do the kind of science that we do because our problems are larger than what you can have on a campus cluster. We really need to have the scale of these machines available to the scientific community to enable the kind of science that we do,” Perilla said.

Perilla described the increasing use of the ‘computational microscope,’ the combination of supercomputers with laboratory data. “With the computational microscope, you can see how things move. Many experimental techniques are just a snapshot. With the computational microscope, you can actually see how things are moving,” he said.Supercomputer modeling of how building blocks of HIV-1 move in time made a difference in this study. “That discovery opens a door for development of new treatments. It’s a therapeutic target. Because of that, it makes it very appealing for drug development and therapeutic development,” Perilla said.

There remains much to be learned about HIV-1 behaves, said Perilla. “We’re basic scientists. NSF’s mission is to understand these systems as living organisms. The overall idea is that we want to understand the virus as a biological problem and ultimately this knowledge will be used to derive therapeutics,” Perilla said.

The study, “Inositol phosphates are assembly cofactors for HIV-1,” was published in the journal Nature on August 1, 2018. The study authors are Robert A. Dick and Volker M. Vogt of Cornell University; Kaneil K. Zadrozny, Jonathan M. Wagner, Barbie K. Ganser-Pornillos, and Owen Pornillos of the University of Virginia; Chaoyi Xu and Juan R. Perilla of the University of Delaware; Florian K. M. Schur of the European Molecular Biology Laboratory and the Institute of Science and Technology Austria; Terri D. Lyddon, Marc C. Johnson, and Clifton L. Ricana of the University of Missouri. The National Institutes of Health funded the research. This work used the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation grant number OCI-1053575.


Source: Jorge Salazar, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This