Supercomputers Boost Understanding of Distance between Jupiter and Saturn

April 14, 2021

April 14, 2021 — The solar system’s two largest planets, Jupiter and Saturn, received worldwide publicity on December 21, 2020, as they glided closer than they’ve been since 1623. Visible around the globe, “The Great Conjunction” placed the two planets only 0.1 degree apart from one another.

Typically, Jupiter and Saturn have been known to “keep their distance” from one another. Understanding why these two planets have so much space between them was the focus of a recent Icarus journal article. Born Eccentric: Constraints on Jupiter and Saturn’s Pre-Instability Orbits encompassed the analysis of supercomputer simulations by an international team of researchers—thanks to allocations on supercomputers by the National Science Foundation’s (NSF) Extreme Science and Engineering Discovery Environment (XSEDE).

Comet, a supercomputer at the San Diego Supercomputer Center at UC San Diego, and Bridges at the Pittsburgh Supercomputing Center were used to run more than 6,000 simulations to better understand the space between the two planets. The simulations’ development and analyses was led by Carnegie Institution of Washington Postdoctoral Fellow Matthew Clement, who teamed with astronomer Sean Raymond of the Laboratoire d’ Astrophysique de Bordeaux in Pessac, France, and several researchers from the University of Oklahoma, Rice University, and the Southwest Research Institute.

Comet provided researchers with a large number of cores so that they could run more than 6,000 simulations related to the spacing of Jupiter and Saturn. They found that the two large planets most likely formed with Jupiter making two orbits for every one of Saturn’s, rather than a resonance of three Jupiter orbits for every two of Saturn’s, which most previous studies had assumed.

“We are fairly certain that the giant planets, including Jupiter and Saturn, were born closer together than they are today and one challenge to determine how and why they are now so far apart is to better understand how Jupiter’s orbit became so eccentric and elliptical,” said Clement. “Historically, simulations that reproduce Jupiter’s orbital shape tend to push Saturn too far out in to the outer solar system, beyond where Uranus is today, so with our study, we used initial conditions consistent with hydrodynamical models of the giant planets forming in gaseous proto-planetary disks to more consistently generate Jupiter- and Saturn-like orbits.”

According to scientists, the interplay of these two gas giants’ orbits drives a good amount of the solar system’s evolution as a whole. Jupiter itself makes up about two-thirds of all the total mass in planets, asteroids, and comets in the solar system. Meanwhile, Saturn comprises the majority of the rest of the material.

“The orbital dance that Jupiter and Saturn perform today drive a myriad of dynamical effects in the solar system, and likely affected the Earth’s growth in the past,” explained Clement. “This helps us understand why Earth is a nice temperate and water-rich place where we can live, while Mars and Venus are quite inhospitable to life as we know it.”

While previous studies have assumed that Jupiter and Saturn were born in what is known as a 3:2 mean motion resonance (Jupiter went around the Sun three times for every two Saturn cycles), Clement’s research considered an initial 2:1 resonance (two Jupiter orbits for every one of Saturn’s). Thus, the planets formed farther apart.

“This is the best way to explain the planets’ modern orbital dance,” he said. “Interestingly, perhaps the best observed photo-planetary disk, known as PDS-70, a system of planets in the process of growing, seems to be dominated by two giant planets similar to Jupiter and Saturn in our own solar system also in a 2:1 resonance.”

Understanding Jupiter and Saturn in this manner also helps planetary scientists compare our own system of planets to the large contingent of discovered exoplanets. Clement said that if we were observing our own solar system from afar with current techniques, we would only be able to detect Jupiter and Saturn – not any of the other planets. However, when we look at the population of planets detected so far with masses similar to that of Jupiter and Saturn, their orbits look nothing like those in the solar system.

Some systems host Jupiter-like planets on very short orbits, closer to the sun than Mercury (the so-called hot Jupiters). Others host Jupiter- and Saturn-like planets on more distant orbits like those of the actual Jupiter and Saturn). However their orbital eccentricities are extremely high, like comets have in our solar system. There are also a few systems with four or more giant planets on wide orbits with low eccentricities such as our giant planets have, but they are in a chain of resonances. So, the solar system exists in the curious “middle ground” between those last two types of systems, according to the researchers.

“Our work essentially tries to understand why we appear to be the ‘missing link’ between these two types of systems, and our results indicate that this is because of Jupiter and Saturn formed in the 2:1 resonance rather than a more compact chain like the 3:2,” said Clement. “Because this is such a highly chaotic process, we would not have been able to take our project to this scale of thousands of simulations without Comet and Bridges.

Key funding for this research was provided by the National Science Foundation (AST-1615975), an NSF CAREER award (1846388), the NASA Astrobiology Institute (NNH12ZDA002C and  NNA13AA93A), and NASA (80NSSC18K0828). Computing time on Comet and Bridges was awarded via XSEDE (TG-AST200004).

Source: Kimberly Mann Bruch, UCSD

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm bulk wafer. With ~50 billion transistors, the chip will enab Read more…

Supercomputer-Powered CRISPR Simulation Lights Path to Better DNA Editing

May 5, 2021

CRISPR-Cas9 – mostly just known as CRISPR – is a powerful genome editing tool that uses an enzyme (Cas9) to slice off sections of DNA and a guide RNA to repair and modify the DNA as desired, opening the door for cure Read more…

LRZ Announces New Phase of SuperMUC-NG Supercomputer with Intel’s ‘Ponte Vecchio’ GPU

May 5, 2021

At the Leibniz Supercomputing Centre (LRZ) in München, Germany – one of the constituent centers of the Gauss Centre for Supercomputing (GCS) – the SuperMUC-NG system has stood tall for several years, placing 15th on Read more…

HPC Simulations Show How Antibodies Quash SARS-CoV-2

May 5, 2021

Following more than a year of rapid-fire research and pharmaceutical development, nearly a billion COVID-19 vaccine doses have been administered around the world, with many of those vaccines proving remarkably effective Read more…

Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach

May 4, 2021

There’s no quibbling with Nvidia’s success. Entrenched atop the GPU market, Nvidia has ridden its own inventiveness and growing demand for accelerated computing to meet the needs of HPC and AI. Recently it embarked o Read more…

AWS Solution Channel

FLYING WHALES runs CFD workloads 15 times faster on AWS

FLYING WHALES is a French startup that is developing a 60-ton payload cargo airship for the heavy lift and outsize cargo market. The project was born out of France’s ambition to provide efficient, environmentally friendly transportation for collecting wood in remote areas. Read more…

2021 Winter Classic – Coaches Chat

May 4, 2021

The Winter Classic Invitational Student Cluster Competition raged for all last week and now we’re into the week of judging interviews. Time has been flying. So as we wait for results, let’s dive a bit deeper into t Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach

May 4, 2021

There’s no quibbling with Nvidia’s success. Entrenched atop the GPU market, Nvidia has ridden its own inventiveness and growing demand for accelerated compu Read more…

Intel Invests $3.5 Billion in New Mexico Fab to Focus on Foveros Packaging Technology

May 3, 2021

Intel announced it is investing $3.5 billion in its Rio Rancho, New Mexico, facility to support its advanced 3D manufacturing and packaging technology, Foveros. Read more…

Supercomputer Research Shows Standard Model May Withstand Muon Discrepancy

May 3, 2021

Big news recently struck the physics world: researchers at the Fermi National Accelerator Laboratory (FNAL), in the midst of their Muon g-2 experiment, publishe Read more…

HPC Career Notes: May 2021 Edition

May 3, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

NWChemEx: Computational Chemistry Code for the Exascale Era

April 29, 2021

A team working on biofuel research is rewriting the decades-old NWChem software program for the exascale era. The new software, NWChemEx, will enable computatio Read more…

HPE Will Build Singapore’s New National Supercomputer

April 28, 2021

More than two years ago, Singapore’s National Supercomputing Centre (NSCC) announced a $200 million SGD (~$151 million USD) investment to boost its supercomputing power by an order of magnitude. Today, those plans come closer to fruition with the announcement that Hewlett Packard Enterprise (HPE) has been awarded... Read more…

Arm Details Neoverse V1, N2 Platforms with New Mesh Interconnect, Advances Partner Ecosystem

April 27, 2021

Chip designer Arm Holdings is sharing details about its Neoverse V1 and N2 cores, introducing its new CMN-700 interconnect, and showcasing its partners' plans t Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Leading Solution Providers


Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

  • arrow
  • Click Here for More Headlines
  • arrow