Supercomputers Help Design Mutant Enzyme That Eats Plastic Bottles

June 27, 2018

June 27, 2018 — A dump truck’s worth of plastic empties into the ocean every minute. Worldwide, humankind produces over 300 million tons of plastic each year, much of which is predicted to last centuries to millennia and pollutes both aquatic and terrestrial environments. PET plastic, short for polyethylene terephthalate, is the fourth most-produced plastic and is used to make things like beverage bottles and carpets, most of which are not being recycled. Some scientists are hoping to change that, using supercomputers to engineer an enzyme that breaks down PET. They say it’s a step on a long road toward recycling PET and other plastics into commercially valuable materials at industrial scale.

Supercomputers helped study the binding of a plastic-degrading enzyme, PETase, which could lead to developing industrial-scale plastic recycling for throw-away bottles and carpet. Electrostatic potential distribution of PETase structure courtesy of Gregg Beckham.

“We’re ideally going from a place where plastics are hard to recycle to a place where we use nature and millions of years of evolution to direct things in a way that make plastic easy to recycle,” said Lee Woodcock, an Associate Professor of Chemistry at the University of South Florida. Woodcock co-authored a study on the structure of an enzyme to degrade PET and was published March of 2018 in the Proceedings of the National Academy of Sciences.

The study builds on a discovery in 2016 by Yoshida et al.of a bacterium, Ideonella sakaiensis 201-F6, that feeds on PET plastic as its source of carbon and energy. The PNAS study authors focused on the bacteria’s plastic-degrading enzyme, called PETase. Team members at the University of Portsmouth, led by Professor John McGeehan, used X-ray crystallography at the Diamond Light Source in the UK to solve the high resolution crystal structure of PETase.

“We then used computer simulations to understand how a polymeric ligand like PET would be able to bind to the enzyme,” said study co-author Gregg Beckham, a Senior Research Fellow and Group Leader at the US National Renewable Energy Laboratory (NREL). “We also conducted experimental work to show that indeed, the PETase can break down water or soda bottles, industrially relevant PET films, and another plastic, polyethylene furanoate.”

After doing this work on the structure and function of the PETase enzyme, the authors next tried to understand its evolution and look to a similar enzyme, a family of cutinases, which degrade the waxy polymer cutin found on the surface of plants.

“We developed the hypothesis that if we make the PETase enzyme more like a cutinase, then we should make the enzyme worse. When we did this work, in fact we ended up making the enzyme slightly better by doing that,” Woodcock said.

“It was incredibly surprising to us,” Beckham explained. “When we made it more cutinase-like, the enzyme was modestly improved. That’s actually one of the key aspects of where computation came in, because it allowed us to essentially predict or suggest aromatic-aromatic interactions in the enzyme with the aromatic polyester PET could potentially be responsible for its improved activity. But it was quite a surprise to us,” Beckham said.

Supercomputers allowed them to tackle tough science questions on PETase, such as the details of how it interacts on a molecular scale bound to a substrate, something beyond the scope of what could be determined by knowing its crystal structure.

The researchers took advantage for this study of computational resources of XSEDE, the Extreme Science and Engineering Discovery Environment, funded by the National Science Foundation.

“Having access to XSEDE resources really opens up the possibility of being able to model and being able to study what type of large-scale conformational or even local, small structural changes occur as a function of both binding to the substrate and, additionally, what are the structural changes the large-scale or local, small scale structural changes that occur in the enzyme after we make the mutations. That was a big part of what we were looking at,” Woodcock said.

Woodcock explained that they simulated the long timescales of the enzyme using the Chemistry at Harvard Macromolecular Mechanics (CHARMM) force field and program itself, as well as Nanoscale Molecular Dynamics (NAMD) software.

XSEDE awarded Gregg Beckham allocations on the Stampede1 and Stampede2 systems at the Texas Advanced Computing Center (TACC) and on the Comet system at the San Diego Supercomputer Center (SDSC).

“Our experience to date on Stampede2 has been absolutely wonderful,” Beckham said. “For all the codes on there that we use, it’s been a fantastic machine. We get through the queues quickly. We’re producing a lot of great science across the spectrum of what our groups are collectively doing together using Stampede2 right now. Certainly, for the research on the plastics-degrading enzyme, we’re using it for manuscripts and studies going forward on this same topic.”

“One nice thing about Comet,” Woodcock said, “is that you have, for jobs that you need to get through in a high-throughput fashion, SDSC has a shared queue, which allows you to submit much smaller jobs but do it in a very high-throughput fashion, as they can share cores on the nodes at Comet. This was particularly helpful.”

Both researchers agreed that computation helps make scientific discoveries. “Experimentalists and computational scientists are working hand-in-hand ever more frequently,” Woodcock said. “And without access to resources like this, this would really take us a step back, or multiple steps back in producing the highest levels of science and really being able to address the world’s most challenging problems, which is what we did in this particular study, done by partnering with top level experimental groups like our collaborators in the UK and with us here in the US.”

Beckham said that their work has just begun on enzymes that clean up plastic pollution. “We’re just starting to understand how this enzyme has evolved,” Beckham said. He wants to use computation to take advantage of large databases of genomics and metagenomics on enzymes to find the needles in the haystack that can degrade plastics.

“The other thing too that we’re interested in,” Beckham said, “is if we’re able to do this at much higher temperature, that would be able to accelerate the degradation of PET and get us into realms that potentially could be industrially relevant in terms of using an enzyme to degrade PET and then convert that into the higher value materials, which could incentivize higher rates of reclamation, especially in the developing world where lots of plastic waste goes into the ocean.”

Lee Woodcock sees new computational techniques as a game-changer in modeling non-druglike forcefields that tackle polymer interactions more realistically than CHARMM and NAMD can today. “I’m working with colleagues at NREL on making sure that we can improve the force fields in a very rapid fashion, so that if somebody comes in and says that we need to look at this polymer next, we have confidence that we can put together a modeling strategy in a very short amount of time to get that a quick turnaround when we have to model many different polymers.

The scientists are hopeful their work will one day make the world outside of the lab a better place. “Understanding how we can better design processes to recycle plastics and reclaim them is a dire global problem and it’s something that the scientific and engineering community has to come up with solutions for,” Beckham said.

The study, “Characterization and engineering of a plastic-degrading aromatic polyesterase,” was published in March 2018 in the Proceedings of the National Academy of Sciences. The authors are Harry P. Austin, Mark D. Allen, Alan W. Thorne, John E. McGeehan of the University of Portsmouth; Bryon S. Donohoe, Rodrigo L. Silveira, Michael F. Crowley, Antonella Amore, Nicholas A. Rorrer, Graham Dominic, William E. Michener, Christopher W. Johnson, Gregg T. Beckham of the National Renewable Energy Laboratory; Fiona L. Kearns, Benjamin C. Pollard, H. Lee Woodcock of the University of South Florida; Munir S. Skaf of the University of Campinas; Ramona Duman, Kamel El Omari, Vitaliy Mykhaylyk, Armin Wagner of the Diamond Light Source, Harwell Science and Innovation Campus. The National Renewable Energy Laboratory Directed Research and Development Program funded the study, with computer time provided by the Extreme Science and Engineering Discovery Environment (XSEDE) allocation MCB-090159.


Source: TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire