Supercomputers Help USGS Improve Seismic Forecasts for California

October 25, 2017

Oct. 25, 2017 — Southern California has the highest earthquake risk of any region in the U.S., but exactly how risky and where the greatest risks lie remains an open question.

Earthquakes occur infrequently and depend on complex geological factors deep underground, making them hard to reliably predict in advance. For that reason, forecasting earthquakes means relying on massive computer models and multifaceted simulations, which recreate the rock physics and regional geology and require big supercomputers to execute.

In June 2017, a team of researchers from the U.S. Geological Survey and the Southern California Earthquake Center (SCEC) released a major paper in Seismological Research Letters that summarized the scientific and hazard results of one of the world’s biggest and most well-known earthquake simulation projects: The Uniform California Earthquake Rupture Forecast (UCERF3).

The results relied on computations performed on the original Stampede supercomputer at the Texas Advanced Computing Center, resources at the University of Southern California Center for High-Performance Computing , as well as the newly deployed Stampede2 supercomputer, to which the research team had early access. (Stampede1 and Stampede2 are supported by grants from the National Science Foundation.)

“High-performance computing on TACC’s Stampede system, and during the early user period of Stampede2, allowed us to create what is, by all measures, the most advanced earthquake forecast in the world,” said Thomas H. Jordan, director of the Southern California Earthquake Center and one of the lead authors on the paper.

The new forecast is the first fault-based model to provide self-consistent rupture probabilities from the very short-term — over a period of less than an hour — to the very long term — up to more than a century. It is also the first model capable of evaluating the short-term hazards that result from multi-event sequences of complex faulting.

To derive the model, the researchers ran 250,000 rupture scenarios of the state of California, vastly more than in the previous model, which simulated 8,000 ruptures.

Among its novel findings, the researchers’ simulations showed that in the week following a magnitude 7.0 earthquake, the likelihood of another magnitude 7.0 quake would be up to 300 times greater than the week beforehand. This scenario of ‘cascading’ ruptures was demonstrated in the 2002 magnitude 7.9 Denali, Alaska, and the 2016 magnitude 7.8 Kaikoura, New Zealand earthquakes, according to David Jacobson and Ross Stein of Temblor.

The dramatic increase in the likelihood of powerful aftershocks is due to the inclusion of a new class of models that assess short-term changes in seismic hazard based on what is known about earthquake clustering and aftershock excitations. These factors have never been used in a comprehensive, statewide model like this one.

The current model also takes into account the likelihood of ruptures jumping from one fault to a nearby one, which has been observed in California’s highly interconnected fault system.

Based on these and other new factors, the new model increases the likelihood of powerful aftershocks but downgrades the predicted frequency of earthquakes between magnitude 6.5 and 7.0, which did not match historical records.

Importantly, UCERF3 can be updated with observed seismicity — real-time data based on earthquakes in action — to capture the static or dynamic triggering effects that play out during a particular sequence of events. The framework is adaptable to many other continental fault systems, and the short-term component might be applicable to the forecasting of minor earthquakes and tremors that are caused by human activity.

The impact of such an improved model goes beyond the fundamental scientific improvement it represents. It has the potential to impact building codes, insurance rates, and the state’s response to a powerful earthquake.

Said Jordan, “The U.S. Geological Survey has included UCERF3 as the California component of the National Seismic Hazard Model, and the model is being evaluated for use in operational earthquake forecasting on timescales from hours to decades.”

Estimating the Cost to Rebuild

In addition to forecasting the likelihood of an earthquake, models like UCERF3 help predict the associated costs of earthquakes in the region. In recent months, the researchers used UCERF3 and Stampede2 to create a prototype operational loss model, which they described in a paper posted online to Earthquake Spectra in August.

The model estimates the statewide financial losses to the region (the costs to repair buildings and other damages) caused by an earthquake and its aftershocks. The risk metric is based on a vulnerability function and the total replacement cost of asset types in a given census tract.

The model found that the expected loss per year when averaged over many years would be $4.0 billion statewide. More importantly, the model was able to quantify how expected losses change with time due to recent seismic activity. For example, the expected losses in a year following an magnitude 7.1 main shock spike to $24 billion due to potentially damaging aftershocks, a factor of six greater than during “normal” times.

Being able to quantify such fluctuations will enable financial institutions, such as earthquake insurance providers, to adjust their business decisions accordingly.

“It’s all about providing tools that will help make society more resilient to damaging earthquake sequences,” says Ned Field of the USGS, another lead author of the two studies.

Though there’s a great deal of uncertainty in both the seismicity and the loss estimates, the model is an important step at quantifying earthquake risk and potentially devastation in the region, thereby helping decision-makers determine whether and how to respond.


Source: Aaron Dubrow, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire