Supercomputers Yield Sharper View of Yellowstone’s Magma

April 17, 2018

April 17, 2018 — University of Oregon (UO) researchers, using the power of supercomputer modeling, have delivered focus to fuzzy views of previously published seismic wave imaging of magma under Yellowstone National Park.

The modeling, led by Dylan Colón, a UO doctoral student in the Department of Earth Sciences, unveiled a transition zone in the crust 3 to 6 miles below the surface. Pockets of magma lay above and below the zone, which separates cold, rigid rocks of the upper crust from hot rocks easily altered by partially molten materials down below.

Image courtesy of University of Oregon.

Yellowstone’s geology reflects violent volcanic eruptions, large calderas and extensive lava flows. The crust below the park is heated and softened by infusions of magma from a mantle plume like that at Hawaii’s Kilauea volcano. Huge amounts of water that fuel the geysers and hot springs, which draw tourists to Yellowstone, cool the crust and prevent it from becoming too hot.

The park also is a magnet for scientists seeking to understand the magma chambers so they can try to predict future eruptions. The last caldera forming eruption occurred 630,000 years ago.

The new structural information, detailed in a paper published in the journal Geophysical Research Letters, may apply to supervolcanoes worldwide, but, for now, it is not helpful for projecting future volcanic activity, Colón said.

The structure at Yellowstone, however, may explain past explosive eruptions, said UO geologist Ilya Bindeman, a study co-author.

“This is the nursery, a geological and petrological match with eruptive products,” he said. “Our modeling helps to identify the geologic structure of where the rhyolitic material is located.”

Rhyolitic magma is rich is silica. Its overall chemical composition gives it a lower temperature and higher viscosity than other magmas. It doesn’t flow easily and resists gas expansion. Pressure builds over time and fuels violent eruptions.

Seismic imaging published in 2014 and 2015 by University of Utah-led teams pointed, respectively, to a magma chamber near the surface and another at a depth of 12-27 miles. However, Colón said, those studies could not identify the composition, state and amount of material in the two magma bodies or how and why they formed.

To approach that challenge, Colón and Bindeman teamed with Taras V. Gerya, a scientist at the Swiss Federal Institute of Technology, also known as ETH Zurich, to write new codes for supercomputer modeling.

Their modeling repeatedly identified a large layer of cooled magma with a high melting point forms at a mid-crustal sill, separating the two magma bodies.

“This research helps to explain some of the chemical signatures that are seen in eruptive materials,” Colón said. “We can also use it to explore how hot the mantle plume is by comparing models of different plumes to the actual situation at Yellowstone that we understand from the geologic record.”

The National Science Foundation funded the work through a grant to Bindeman. Colón also received support from the Jay M. McMurray Fund, which provides summer research and travel funding, in the UO Department of Earth Sciences.


Source: Jim Barlow, University of Oregon

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

U.S Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progre Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that simulating physical systems could be done most effectively Read more…

By John Russell

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

U.S Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software T Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This