Supercomputing-Backed Analysis Reveals Decades of Questionable Investments

January 17, 2018

Jan. 17, 2018 — One of the key principles in asset pricing — how we value everything from stocks and bonds to real estate — is that investments with high risk should, on average, have high returns.

“If you take a lot of risk, you should expect to earn more for it,” said Scott Murray, professor of finance at George State University. “To go deeper, the theory says that systematic risk, or risk that is common to all investments” — also known as ‘beta’ — “is the kind of risk that investors should care about.”

This theory was first articulated in the 1960s by Sharpe (1964), Lintner (1965), and Mossin (1966). However, empirical work dating as far back as 1972 didn’t support the theory. In fact, many researchers found that stocks with high risk often do not deliver higher returns, even in the long run.

“It’s the foundational theory of asset pricing but has little empirical support in the data. So, in a sense, it’s the big question,” Murray said.

Isolating the Cause

In a recent paper in the Journal of Financial and Quantitative Analysis, Murray and his co-authors Turan Bali (Georgetown University), Stephen Brown (Monash University) and Yi Tang (Fordham University), argue that the reason for this ‘beta anomaly’ lies in the fact that stocks with high betas also happen to have lottery-like properties – that is, they offer the possibility of becoming big winners. Investors who are attracted to the lottery characteristics of these stocks push their prices higher than theory would predict, thereby lowering their future returns.

Scott Murray, Assistant Professor of Finance at Georgia State University

To support this hypothesis, they analyzed stock prices from June 1963 to December 2012. For every month, they calculated the beta of each stock (up to 5,000 stocks per month) by running a regression— a statistical way of estimating the relationships among variables — of the stock’s return on the return of the market portfolio. They then sorted the stocks into 10 groups based on their betas and examined the performance of stocks in the different groups.

“Theory predicts that stocks with high betas do better in the long run than stocks with low betas,” Murray said. “Doing our analysis, we find that there really isn’t a difference in the performance of stocks with different betas.”

They next analyzed the data again and, for each stock month, calculated how lottery-like each stock was. Once again, they sorted the stocks into 10 groups based on their betas and then repeated the analysis. This time, however, they implemented a constraint that required each of the 10 groups to have stocks with similar lottery characteristics. By making sure the stocks in each group had the same lottery properties, they controlled for the possibility that their failure to detect a difference in performance between in their original tests was because the stocks in different beta groups have different lottery characteristics.

“We found that after controlling for lottery characteristics, the seminal theory is empirically supported,” Murray said.

In other words: price pressure from investors who want lottery-like stocks is what causes the theory to fail. When this factor is removed, asset pricing works according to theory.

Identifying the Source

Other economists had pointed to a different factor — leverage constraints — as the main cause of this market anomaly. They believed that large investors like mutual funds and pensions that are not allowed to borrow money to buy large amounts of lower-risk stocks are forced to buy higher-risk ones to generate large profits, thus distorting the market.

Murray used the National Science Foundation-funded Wrangler supercomputer at the Texas Advanced Computing Center for his regression analysis. (Source: TACC)

However, an additional analysis of the data by Murray and his collaborators found that the lottery-like stocks were most often held by individual investors. If leverage constraints were the cause of the beta anomaly, mutual funds and pensions would be the main owners driving up demand.

The team’s research won the prestigious Jack Treynor Prize, given each year by the Q Group, which recognizes superior academic working papers with potential applications in the fields of investment management and financial markets.

The work is in line with ideas like prospect theory, first articulated by Nobel-winning behavioral economist Daniel Kahneman, which contends that investors typically overestimate the probability of extreme events — both losses and gains.

“The study helps investors understand how they can avoid the pitfalls if they want to generate returns by taking more risks,” Murray said.

To run the systematic analyses of the large financial datasets, Murray used the Wrangler supercomputer at the Texas Advanced Computing Center (TACC). Supported by a grant from the National Science Foundation, Wrangler was built to enable data-driven research nationwide. Using Wrangler significantly reduced the time-to-solution for Murray.

The plot shows the time-series of aggregate lottery demand. Aggregate lottery demand in any month t is measured as the equal-weighted (EWMAX) or value-weighted (VWMAX) average value of MAX across all stocks in the sample in month t. (Source: TACC)

“If there are 500 months in the sample, I can send one month to one core, another month to another core, and instead of computing 500 months separately, I can do them in parallel and have reduced the human time by many orders of magnitude,” he said.

The size of the data for the lottery-effect research was not enormous and could have been computed on a desktop computer or small cluster (albeit taking more time). However, with other problems that Murray is working on – for instance research on options – the computational requirements are much higher and require super-sized computers like those at TACC.

“We’re living in the big data world,” he said. “People are trying to grapple with this in financial economics as they are in every other field and we’re just scratching the surface. This is something that’s going to grow more and more as the data becomes more refined and technologies such as text processing become more prevalent.”

Though historically used for problems in physics, chemistry and engineering, advanced computing is starting to be widely used — and to have a big impact — in economics and the social sciences.

According to Chris Jordan, manager of the Data Management & Collections group at TACC, Murray’s research is a great example of the kinds of challenges Wrangler was designed to address.

“It relies on database technology that isn’t typically available in high-performance computing environments, and it requires extremely high-performance I/O capabilities. It is able to take advantage of both our specialized software environment and the half-petabyte flash storage tier to generate results that would be difficult or impossible on other systems,” Jordan said. “Dr. Murray’s work also relies on a corpus of data which acts as a long-term resource in and of itself — a notion we have been trying to promote with Wrangler.”

Beyond its importance to investors and financial theorists, the research has a broad societal impact, Murray contends.

“For our society to be as prosperous as possible, we need to allocate our resources efficiently. How much oil do we use? How many houses do we build? A large part of that is understanding how and why money gets invested in certain things,” he explained. “The objective of this line of research is to understand the trade-offs that investors consider when making these sorts of decisions.”


Source: Aaron Dubrow, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This