Supercomputing-Backed Analysis Reveals Decades of Questionable Investments

January 17, 2018

Jan. 17, 2018 — One of the key principles in asset pricing — how we value everything from stocks and bonds to real estate — is that investments with high risk should, on average, have high returns.

“If you take a lot of risk, you should expect to earn more for it,” said Scott Murray, professor of finance at George State University. “To go deeper, the theory says that systematic risk, or risk that is common to all investments” — also known as ‘beta’ — “is the kind of risk that investors should care about.”

This theory was first articulated in the 1960s by Sharpe (1964), Lintner (1965), and Mossin (1966). However, empirical work dating as far back as 1972 didn’t support the theory. In fact, many researchers found that stocks with high risk often do not deliver higher returns, even in the long run.

“It’s the foundational theory of asset pricing but has little empirical support in the data. So, in a sense, it’s the big question,” Murray said.

Isolating the Cause

In a recent paper in the Journal of Financial and Quantitative Analysis, Murray and his co-authors Turan Bali (Georgetown University), Stephen Brown (Monash University) and Yi Tang (Fordham University), argue that the reason for this ‘beta anomaly’ lies in the fact that stocks with high betas also happen to have lottery-like properties – that is, they offer the possibility of becoming big winners. Investors who are attracted to the lottery characteristics of these stocks push their prices higher than theory would predict, thereby lowering their future returns.

Scott Murray, Assistant Professor of Finance at Georgia State University

To support this hypothesis, they analyzed stock prices from June 1963 to December 2012. For every month, they calculated the beta of each stock (up to 5,000 stocks per month) by running a regression— a statistical way of estimating the relationships among variables — of the stock’s return on the return of the market portfolio. They then sorted the stocks into 10 groups based on their betas and examined the performance of stocks in the different groups.

“Theory predicts that stocks with high betas do better in the long run than stocks with low betas,” Murray said. “Doing our analysis, we find that there really isn’t a difference in the performance of stocks with different betas.”

They next analyzed the data again and, for each stock month, calculated how lottery-like each stock was. Once again, they sorted the stocks into 10 groups based on their betas and then repeated the analysis. This time, however, they implemented a constraint that required each of the 10 groups to have stocks with similar lottery characteristics. By making sure the stocks in each group had the same lottery properties, they controlled for the possibility that their failure to detect a difference in performance between in their original tests was because the stocks in different beta groups have different lottery characteristics.

“We found that after controlling for lottery characteristics, the seminal theory is empirically supported,” Murray said.

In other words: price pressure from investors who want lottery-like stocks is what causes the theory to fail. When this factor is removed, asset pricing works according to theory.

Identifying the Source

Other economists had pointed to a different factor — leverage constraints — as the main cause of this market anomaly. They believed that large investors like mutual funds and pensions that are not allowed to borrow money to buy large amounts of lower-risk stocks are forced to buy higher-risk ones to generate large profits, thus distorting the market.

Murray used the National Science Foundation-funded Wrangler supercomputer at the Texas Advanced Computing Center for his regression analysis. (Source: TACC)

However, an additional analysis of the data by Murray and his collaborators found that the lottery-like stocks were most often held by individual investors. If leverage constraints were the cause of the beta anomaly, mutual funds and pensions would be the main owners driving up demand.

The team’s research won the prestigious Jack Treynor Prize, given each year by the Q Group, which recognizes superior academic working papers with potential applications in the fields of investment management and financial markets.

The work is in line with ideas like prospect theory, first articulated by Nobel-winning behavioral economist Daniel Kahneman, which contends that investors typically overestimate the probability of extreme events — both losses and gains.

“The study helps investors understand how they can avoid the pitfalls if they want to generate returns by taking more risks,” Murray said.

To run the systematic analyses of the large financial datasets, Murray used the Wrangler supercomputer at the Texas Advanced Computing Center (TACC). Supported by a grant from the National Science Foundation, Wrangler was built to enable data-driven research nationwide. Using Wrangler significantly reduced the time-to-solution for Murray.

The plot shows the time-series of aggregate lottery demand. Aggregate lottery demand in any month t is measured as the equal-weighted (EWMAX) or value-weighted (VWMAX) average value of MAX across all stocks in the sample in month t. (Source: TACC)

“If there are 500 months in the sample, I can send one month to one core, another month to another core, and instead of computing 500 months separately, I can do them in parallel and have reduced the human time by many orders of magnitude,” he said.

The size of the data for the lottery-effect research was not enormous and could have been computed on a desktop computer or small cluster (albeit taking more time). However, with other problems that Murray is working on – for instance research on options – the computational requirements are much higher and require super-sized computers like those at TACC.

“We’re living in the big data world,” he said. “People are trying to grapple with this in financial economics as they are in every other field and we’re just scratching the surface. This is something that’s going to grow more and more as the data becomes more refined and technologies such as text processing become more prevalent.”

Though historically used for problems in physics, chemistry and engineering, advanced computing is starting to be widely used — and to have a big impact — in economics and the social sciences.

According to Chris Jordan, manager of the Data Management & Collections group at TACC, Murray’s research is a great example of the kinds of challenges Wrangler was designed to address.

“It relies on database technology that isn’t typically available in high-performance computing environments, and it requires extremely high-performance I/O capabilities. It is able to take advantage of both our specialized software environment and the half-petabyte flash storage tier to generate results that would be difficult or impossible on other systems,” Jordan said. “Dr. Murray’s work also relies on a corpus of data which acts as a long-term resource in and of itself — a notion we have been trying to promote with Wrangler.”

Beyond its importance to investors and financial theorists, the research has a broad societal impact, Murray contends.

“For our society to be as prosperous as possible, we need to allocate our resources efficiently. How much oil do we use? How many houses do we build? A large part of that is understanding how and why money gets invested in certain things,” he explained. “The objective of this line of research is to understand the trade-offs that investors consider when making these sorts of decisions.”


Source: Aaron Dubrow, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This