Supercomputing Enables Analysis of Massive Atmospheric Science Datasets

February 9, 2022

Feb. 9, 2022 — On March 1, 2002, European researchers looked to the sky as the Envisat satellite mission began. Envisat hosted nine instruments designed to gather information about the Earth’s atmosphere in unprecedented detail. The satellite continued to send data back to Earth until 2012, when European Space Agency (ESA) staff lost contact and declared an official end to the mission.

One of the instruments aboard Envisat was the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which measured the infrared radiation emitted by the Earth’s atmosphere. These measurements help scientists better understand the role greenhouse gases play in our atmosphere.

Since many gases found in the atmosphere exhibit characteristic “fingerprints” in these high-resolution spectra, each set of spectra, recorded at a given location, allows researchers to obtain the vertical profiles of more than 30 key gases.

During each of the satellite’s 14 daily orbits, the instrument took measurements at up to 95 different locations, each of them consisting of 17 to 35 different spectra corresponding to altitudes from 5 to 70 km, but sometimes reaching up to 170 km.

Monthly zonal means of temperature and volume mixing ratios (vmr) of several chemical species calculated from the spectra measured by the MIPAS instrument during September 2009. The abscissa gives the latitude from -90 degree (South Pole) to 90 degree (North Pole) and the ordinate is the geometric altitude. The vmr values are given as part per million (ppmv) or part per billion (ppbv), while temperatures are given in Kelvin. Credit: Michael Kiefer/KIT

Taken together, a decade of compressed MIPAS spectral data fills roughly 10 terabytes. In order to analyze such a massive amount of data in a timely manner, researchers at the Karlsruhe Institute of Technology (KIT) and the Instituto de Astrofísica de Andalucía (IAA-CSIC) turned to the power of high-performance computing (HPC). The team partnered with the High-Performance Computing Center Stuttgart (HLRS) to securely store their large dataset and used the center’s supercomputing resources to model and analyze MIPAS’s infrared spectra.

“Using HLRS’s supercomputer we were able to assemble a complete dataset for our 10-year time series quickly and thoroughly,” said Dr. Michael Kiefer, researcher at KIT and principal investigator for the project. “We could attempt to do this work on cluster computers, but the processing would take years to get the result. With HPC we can quickly look at our results and extract a wider variety of chemical species from the measured spectra. This isn’t just a quantitative improvement, but also a qualitative one.”

Combing through the ever-expanding data deluge

In recent years, scientific computing has entered a new phase of development. For decades, computing advancements were rooted in the idea of Moore’s Law—a prediction by Gordon Moore that the shrinking size of transistors would make it possible to double the number of transistors on a computer chip every two years. This, he proposed in 1965, would lead to a nearly exponential increase in computing power over the decades to come. While Moore was correct for several decades, the last 10 years brought this trend to an end.

As luck would have it, however, raw computing power was also no longer what many researchers needed most. Today, solving scientific challenges is often no longer limited by processing speed, but rather by the need to efficiently transfer, analyze, and store large datasets.

This holds true for the MIPAS researchers, who must process and analyze a decade of data tracking 36 different chemical species and temperature. The team’s work is made even more complex by the complex relationship trace gases have with one another at higher altitudes—researchers must chart the interplay of temperature, radiation, concentrations of other chemicals, and how all these characteristics influence one another. As a result, the team has to do computationally expensive non-local thermodynamic equilibrium (NLTE) calculations for these species. Water vapor alone required roughly one million core hours for these calculations, and the team had to model nine species using NLTE methods.

While these calculations could individually be performed on more modest computing resources, they would collectively take far too long without access to HPC resources. “Earlier in the project we were just working on a local cluster to run a month of data from the upper atmosphere, where this complex NLTE is required,” said Dr. Bernd Funke, a senior researcher at IAA and collaborator on the project. “Getting results for one month of data could take almost one month of computation. Now we can run these things in two or three nights. From a scientific point of view, this quick access to the data is extremely valuable.”

Both Kiefer and Funke indicated that HLRS computing resources—as well as the ability to store their data on HLRS’s fast and secure High-Performance Storage System—enabled the team to rapidly analyze its data.

Next-generation experimental techniques drive need for next-generation computing

As the researchers finish their analysis of the MIPAS dataset, they anticipate that the near future will see new mid-infrared space missions. Considering the massive datasets they expect these missions to produce, HPC centers like HLRS will continue to play a major role in hosting, processing, and analyzing the data.

Future missions such as the Earth Explorer candidate mission CAIRT, recently selected by ESA for pre-feasibility studies, will use imaging methods, which increase the number of measurements per orbit and add two additional dimensions to the data. This will not only give researchers an even more detailed view of atmospheric composition and processes, but also greatly increase the complexity and volume of data analysis that will be required. The researchers estimate that one of the projected instruments could result in up to a 1,000-fold increase in datapoints gathered.

The team also indicated that HLRS was quick to embrace their relatively “non-traditional” need for supercomputing resources. The current pivot across the sciences to even more data-centric HPC applications underscored the need for HPC centers to provide a suite of tools in the realms of data storage and management.

The entire MIPAS data set of chemical species in the atmosphere can be accessed at www.imk-asf.kit.edu/english/308.php

Funding for Hazel Hen was provided by Baden-Württemberg Ministry for Science, Research, and the Arts and the German Federal Ministry of Education and Research through the Gauss Centre for Supercomputing (GCS).


Source: Eric Gedenk, High-Performance Computing Center Stuttgart

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire