Supercomputing Propels Jet Atomization Research for Industrial Processes

February 8, 2019

Feb. 8, 2019 — Whether it is designing the most effective method for fuel injection in engines, building machinery to water acres of farmland, or painting a car, humans rely on liquid sprays for countless industrial processes that enable and enrich our daily lives.

To understand how to make liquid jet spray cleaner and more efficient, though, researchers have to focus on the little things: Scientists must observe fluids flowing in atomic, microsecond detail in order to begin to understand one of science’s great challenges—turbulent motion in fluids.

Visualization of the liquid surface and velocity magnitude of a round jet spray.
Copyright: Bundeswehr University Munich

Experiments serve as an important tool for understanding industrial spray processes, but researchers have increasingly come to rely on simulation for understanding and modelling the laws governing the chaotic, turbulent motions present when fluids are flowing quickly.

A team of researchers led by Prof. Dr. Markus Klein at the Bundeswehr University Munich (German: Universität der Bundeswehr München) understood that modelling the complexities of turbulence accurately and efficiently requires it to employ high-performance computing (HPC), and recently, it has been using Gauss Centre for Supercomputing (GCS) resources at the Leibniz Supercomputing Centre (LRZ) in Garching near Munich to create high-end flow simulations for better understanding turbulent fluid motion.

“Our goal is to develop simulation software that someone can apply commercially for real engineering problems,” says Dr. Josef Haßlberger, collaborator on the Klein team. He works together with collaborator Sebastian Ketterl on the computational project. The team’s research recently was chosen for the cover of the Journal of Fluid Mechanics.

It’s a (multi)phase

When scientists and engineers speak of liquid sprays, there is a bit more nuance to it than that—most sprays are actually multiphase phenomena, meaning that some combination of a liquid, solid, and gas are flowing at the same time. In sprays, this generally happens through atomization, or the breakup of a liquid fluid into droplets and ligaments, eventually forming vapours in some applications.

Researchers need to account for this multiphase mixing in their simulations with enough detail to understand some of the minute, fundamental processes governing turbulent motions—specifically, how droplets form, coalesce and break-up, or the surface tension dynamics between liquids and gases—while also capturing a large enough area to see how these motions impact jet sprays. Droplets are formed and influenced by turbulent motion, but also further influence turbulent motion after forming, creating the need for very detailed and accurate numerical simulation.

When modeling fluid flows, researchers have several different methods they can use. Among them, direct numerical simulations (DNS) offer the highest degree of accuracy, as they start with no physical approximations about how a fluid will flow and recreates the process “from scratch” numerically down to the smallest levels of turbulent motion (“Kolmogorov-scale” resolution). Due to its high computational demands, DNS simulations are only capable of running on the world’s most powerful supercomputers, such as SuperMUC at LRZ.

Another common approach for modeling fluid flows, large-eddy simulations (LES), make some assumptions about how fluids will flow at the smallest scales, and instead focus on simulating larger volumes of fluids over longer periods of time. For LES simulations to accurately model fluid flows, though, the assumptions built into the model must rely on quality input data for these small-scale assumptions, hence the need for DNS calculations.

To simulate turbulent flows, the researchers created a three-dimensional grid with more than a billion individual small cells, solving equations for all forces acting on this fluid volume, which according to Newton’s second law, give rise to a fluid accelerating. As a result, the fluids velocity can be simulated in both space and time. The difference between turbulent and laminar, or smooth, flows depends on how fast a fluid is moving as well as how thick, or viscous, it is and in addition to the size of the flow structures. Then researchers put the model in motion, calculating liquid properties from the moment it leaves a nozzle until it has broken up into droplets.

Based on the team’s DNS calculations, it began developing new models for fine-scale turbulence data that can be used to inform LES calculations, ultimately helping to bring accurate jet spray simulations to a more commercial level. LES calculates the energy carrying large structures, but the smallest scales of the flow are modelled, meaning that LES calculations potentially provide high accuracy for a much more modest computational effort.

Flowing in the right direction

Although the team has made progress in improving LES models through gaining a more fundamental understanding of fluid flows through its DNS simulations, there is still room for improvement. While the team can currently simulate the atomization process in detail, it would like to observe additional phenomena taking place on longer time scales, such as evaporation or combustion processes.

Next-generation HPC resources will help to close the gap between academic-caliber DNS of flow configurations and real experiments and industrial applications. This will give rise into more realistic databases for model development and will provide detailed physical insight into phenomena that are difficult to observe experimentally.

In addition, the team has more work to do to implement its improvements to LES models. The next challenge is to model droplets that are smaller than the actual grid size in a typical large-eddy simulation, but still can interact with the turbulent flow and can contribute to momentum exchange and evaporation.


Source: Eric Gedenk, Gauss Centre for Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Expands Worldwide Availability to AMD-based Instances

July 22, 2019

Setting aside potential setbacks caused by U.S. trade policies, the steady cadence of AMD’s revival in HPC and the datacenter continued last week with AWS expanding availability of its AMD Epyc-based instances. Recall Read more…

By Staff

Microsoft Investing $1B in OpenAI Artificial General Intelligence R&D

July 22, 2019

Artificial general intelligence (AGI) is AI’s moonshot, the next giant leap for the AI field. Microsoft regards it to be feasible enough to warrant a $1 billion investment in OpenAI, the not-for-profit research organi Read more…

By Doug Black

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

With HPC the Future is Looking Grid

Gone are the days when problems such as unraveling genetic sequences or searching for extra-terrestrial life were solved using only a single high-performance computing (HPC) resource located at one facility. Read more…

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Microsoft Investing $1B in OpenAI Artificial General Intelligence R&D

July 22, 2019

Artificial general intelligence (AGI) is AI’s moonshot, the next giant leap for the AI field. Microsoft regards it to be feasible enough to warrant a $1 billi Read more…

By Doug Black

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This