Supercomputing Propels Jet Atomization Research for Industrial Processes

February 8, 2019

Feb. 8, 2019 — Whether it is designing the most effective method for fuel injection in engines, building machinery to water acres of farmland, or painting a car, humans rely on liquid sprays for countless industrial processes that enable and enrich our daily lives.

To understand how to make liquid jet spray cleaner and more efficient, though, researchers have to focus on the little things: Scientists must observe fluids flowing in atomic, microsecond detail in order to begin to understand one of science’s great challenges—turbulent motion in fluids.

Visualization of the liquid surface and velocity magnitude of a round jet spray.
Copyright: Bundeswehr University Munich

Experiments serve as an important tool for understanding industrial spray processes, but researchers have increasingly come to rely on simulation for understanding and modelling the laws governing the chaotic, turbulent motions present when fluids are flowing quickly.

A team of researchers led by Prof. Dr. Markus Klein at the Bundeswehr University Munich (German: Universität der Bundeswehr München) understood that modelling the complexities of turbulence accurately and efficiently requires it to employ high-performance computing (HPC), and recently, it has been using Gauss Centre for Supercomputing (GCS) resources at the Leibniz Supercomputing Centre (LRZ) in Garching near Munich to create high-end flow simulations for better understanding turbulent fluid motion.

“Our goal is to develop simulation software that someone can apply commercially for real engineering problems,” says Dr. Josef Haßlberger, collaborator on the Klein team. He works together with collaborator Sebastian Ketterl on the computational project. The team’s research recently was chosen for the cover of the Journal of Fluid Mechanics.

It’s a (multi)phase

When scientists and engineers speak of liquid sprays, there is a bit more nuance to it than that—most sprays are actually multiphase phenomena, meaning that some combination of a liquid, solid, and gas are flowing at the same time. In sprays, this generally happens through atomization, or the breakup of a liquid fluid into droplets and ligaments, eventually forming vapours in some applications.

Researchers need to account for this multiphase mixing in their simulations with enough detail to understand some of the minute, fundamental processes governing turbulent motions—specifically, how droplets form, coalesce and break-up, or the surface tension dynamics between liquids and gases—while also capturing a large enough area to see how these motions impact jet sprays. Droplets are formed and influenced by turbulent motion, but also further influence turbulent motion after forming, creating the need for very detailed and accurate numerical simulation.

When modeling fluid flows, researchers have several different methods they can use. Among them, direct numerical simulations (DNS) offer the highest degree of accuracy, as they start with no physical approximations about how a fluid will flow and recreates the process “from scratch” numerically down to the smallest levels of turbulent motion (“Kolmogorov-scale” resolution). Due to its high computational demands, DNS simulations are only capable of running on the world’s most powerful supercomputers, such as SuperMUC at LRZ.

Another common approach for modeling fluid flows, large-eddy simulations (LES), make some assumptions about how fluids will flow at the smallest scales, and instead focus on simulating larger volumes of fluids over longer periods of time. For LES simulations to accurately model fluid flows, though, the assumptions built into the model must rely on quality input data for these small-scale assumptions, hence the need for DNS calculations.

To simulate turbulent flows, the researchers created a three-dimensional grid with more than a billion individual small cells, solving equations for all forces acting on this fluid volume, which according to Newton’s second law, give rise to a fluid accelerating. As a result, the fluids velocity can be simulated in both space and time. The difference between turbulent and laminar, or smooth, flows depends on how fast a fluid is moving as well as how thick, or viscous, it is and in addition to the size of the flow structures. Then researchers put the model in motion, calculating liquid properties from the moment it leaves a nozzle until it has broken up into droplets.

Based on the team’s DNS calculations, it began developing new models for fine-scale turbulence data that can be used to inform LES calculations, ultimately helping to bring accurate jet spray simulations to a more commercial level. LES calculates the energy carrying large structures, but the smallest scales of the flow are modelled, meaning that LES calculations potentially provide high accuracy for a much more modest computational effort.

Flowing in the right direction

Although the team has made progress in improving LES models through gaining a more fundamental understanding of fluid flows through its DNS simulations, there is still room for improvement. While the team can currently simulate the atomization process in detail, it would like to observe additional phenomena taking place on longer time scales, such as evaporation or combustion processes.

Next-generation HPC resources will help to close the gap between academic-caliber DNS of flow configurations and real experiments and industrial applications. This will give rise into more realistic databases for model development and will provide detailed physical insight into phenomena that are difficult to observe experimentally.

In addition, the team has more work to do to implement its improvements to LES models. The next challenge is to model droplets that are smaller than the actual grid size in a typical large-eddy simulation, but still can interact with the turbulent flow and can contribute to momentum exchange and evaporation.


Source: Eric Gedenk, Gauss Centre for Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire