TACC Donates First-of-Its-Kind Magnum Switch to Computer History Museum

July 12, 2018

July 12, 2018 — Supercomputers are the sports cars of the technology world: fast, glamorous and expensive.

Credit: Dag Spicer, Computer History Museum, Mountain View, CA

This might be why Dag Spicer, senior curator at the Computer History Museum, finds them fascinating. Recently, Spicer and his team in Mountain View, CA, unanimously accepted a piece of TACC’s history into their permanent historical collection — sealing its place as a milestone in computing.

“We’re always searching around the world for new, interesting, and important computing objects,” Spicer said in a recent interview, “and TACC’s Sun Microsystems 2007 Magnum switch was a critical part of high-performance computing (HPC) at that time in history. The TACC switch was the largest of its class and is an example of Infiniband technology, of which we had few examples.”

With more than 100,000 objects in its collection, the Computer History Museum is home to the largest collection of computers and related materials in the world.

The Sun Microsystems Magnum Infiniband switch was part of TACC’s Ranger supercomputer system, in effect connecting the tens of thousands of Ranger’s processors together into a blazingly fast high-speed interconnected network. Specifically, Ranger was a network of 62,976 cores packed into 15,744 quad-core microprocessors.

In 2008, the Ranger system was the first supercomputer in open science to approach the petascale performance mark at 579.4 teraflops — that’s one thousand million million floating-point operations per second. At the time, the $59 million award to build the system was the largest single National Science Foundation (NSF) grant ever received by The University of Texas at Austin.

Ranger debuted as the fifth most powerful computer in the world on the June 2008 Top 500 list, and it was hailed by the NSF as the most powerful supercomputing system in the world for open science research — up to 50,000 times more powerful than a PC at the time.

Everything about Ranger was big — the idea, the award, the system, the desire to do bigger and better science.

The technology that goes into a supercomputer is cutting-edge and impressive, but more importantly, supercomputers help solve the grand challenge problems facing society today and in the future ― problems such as global climate change, water resource management, new energy sources, natural disasters, new materials and manufacturing processes, tissue and organ engineering, patient-specific medical therapies, and drug design.

These issues cannot be addressed or overcome without computing modeling and simulation on HPC systems like Ranger and its follow-on systems.

Founded in 1979 in Boston, but later moved to Mountain View in 1996, the Computer History Museum uses their collections to teach people aged five to 95 about computing and the impact it has on nearly aspect of their daily lives. “We talk about the social consequences of computers and we explain the objects in the context of their own time,” Spicer says.

For example, the museum has the world’s first disk drive made by IBM in 1956. It held only five million 6-bit characters (about 3.75 megabytes), which is equivalent to a single,short song on an iPod. However, at the time, IBM’s goal was to use this disk drive to replace punched cards. Until the mid-1970s, most computer access was via punched cards. “Context is everything,” Spicer says.

“Behind nearly every artifact, exhibit, and pioneering effort is a story that the museum is dedicated to understand and tell,” says Gordon Bell, a pioneer in HPC and parallel computing and co-founder of the museum. “It’s the world’s only institution dedicated to the industry-wide preservation of information processing devices and documentation.”

The other co-founder is Ken Olson, founder of Digital Equipment Corporation. The company was a major American company in the computer industry from the 1950s to the 1990s and specialized in making minicomputers.

In some ways, the museum founders and curators like to think 500 years into the future. “The last 70 years we’ve progressed from mechanical calculators to computers so fast they almost transcend human understanding,” Spicer says. “And yet for the types of problems they are being asked to solve, they are never fast enough. What can we expect in just the next 20 years, let alone the next century? CHM exists to keep an object-based record of this stunning progress.”

Exascale computing, a billion billion calculations per second, is not a final goal in and of itself. Rather it is another stage in what has been a steady rocket blast in computing power since the 1970s. Such capacity represents a thousandfold increase over Ranger, the first ‘Path to Petascale’ computer that came into operation in 2008. Experts say that the open science community may hit the Exascale era by 2021.

“I’m hoping we’ll do a new exhibit here when that time comes,” Spicer concludes, “as it will mark a milestone unimaginable to the original inventors of the computer and the culmination of decades of careful, incremental change. In science, computing power equals discovery. Exascale computing will give us new, thrilling new ways of seeing the world and of solving the critical problems that humanity is facing right now.”


Source: Faith Singer-Villalobos, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Extends Access to Its Leadership Systems Blue Waters & Frontera

December 14, 2018

The National Science Foundation is seeking supplemental requests for access on its leadership-class computers Blue Waters and Frontera to enable "fundamental science and engineering research that would otherwise not be p Read more…

By Staff

CFD on ORNL’s Titan Simulates Cleaner, Low-MPG ‘Opposed Piston’ Engine

December 13, 2018

Pinnacle Engines is out to substantially improve vehicle gasoline efficiency and cut greenhouse gas emissions with a new motor based on an “opposed piston” design that the company hopes will be widely adopted while t Read more…

By Doug Black

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC) is procuring from Atos in two phases over the next year-an Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

4 Ways AI Analytics Projects Fail — and How to Succeed

“How do I de-risk my AI-driven analytics projects?” This is a common question for organizations ready to modernize their analytics portfolio. Here are four ways AI analytics projects fail—and how you can ensure success. Read more…

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Goog Read more…

By Tiffany Trader

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--the study of shapes--seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns. Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This