TACC Donates First-of-Its-Kind Magnum Switch to Computer History Museum

July 12, 2018

July 12, 2018 — Supercomputers are the sports cars of the technology world: fast, glamorous and expensive.

Credit: Dag Spicer, Computer History Museum, Mountain View, CA

This might be why Dag Spicer, senior curator at the Computer History Museum, finds them fascinating. Recently, Spicer and his team in Mountain View, CA, unanimously accepted a piece of TACC’s history into their permanent historical collection — sealing its place as a milestone in computing.

“We’re always searching around the world for new, interesting, and important computing objects,” Spicer said in a recent interview, “and TACC’s Sun Microsystems 2007 Magnum switch was a critical part of high-performance computing (HPC) at that time in history. The TACC switch was the largest of its class and is an example of Infiniband technology, of which we had few examples.”

With more than 100,000 objects in its collection, the Computer History Museum is home to the largest collection of computers and related materials in the world.

The Sun Microsystems Magnum Infiniband switch was part of TACC’s Ranger supercomputer system, in effect connecting the tens of thousands of Ranger’s processors together into a blazingly fast high-speed interconnected network. Specifically, Ranger was a network of 62,976 cores packed into 15,744 quad-core microprocessors.

In 2008, the Ranger system was the first supercomputer in open science to approach the petascale performance mark at 579.4 teraflops — that’s one thousand million million floating-point operations per second. At the time, the $59 million award to build the system was the largest single National Science Foundation (NSF) grant ever received by The University of Texas at Austin.

Ranger debuted as the fifth most powerful computer in the world on the June 2008 Top 500 list, and it was hailed by the NSF as the most powerful supercomputing system in the world for open science research — up to 50,000 times more powerful than a PC at the time.

Everything about Ranger was big — the idea, the award, the system, the desire to do bigger and better science.

The technology that goes into a supercomputer is cutting-edge and impressive, but more importantly, supercomputers help solve the grand challenge problems facing society today and in the future ― problems such as global climate change, water resource management, new energy sources, natural disasters, new materials and manufacturing processes, tissue and organ engineering, patient-specific medical therapies, and drug design.

These issues cannot be addressed or overcome without computing modeling and simulation on HPC systems like Ranger and its follow-on systems.

Founded in 1979 in Boston, but later moved to Mountain View in 1996, the Computer History Museum uses their collections to teach people aged five to 95 about computing and the impact it has on nearly aspect of their daily lives. “We talk about the social consequences of computers and we explain the objects in the context of their own time,” Spicer says.

For example, the museum has the world’s first disk drive made by IBM in 1956. It held only five million 6-bit characters (about 3.75 megabytes), which is equivalent to a single,short song on an iPod. However, at the time, IBM’s goal was to use this disk drive to replace punched cards. Until the mid-1970s, most computer access was via punched cards. “Context is everything,” Spicer says.

“Behind nearly every artifact, exhibit, and pioneering effort is a story that the museum is dedicated to understand and tell,” says Gordon Bell, a pioneer in HPC and parallel computing and co-founder of the museum. “It’s the world’s only institution dedicated to the industry-wide preservation of information processing devices and documentation.”

The other co-founder is Ken Olson, founder of Digital Equipment Corporation. The company was a major American company in the computer industry from the 1950s to the 1990s and specialized in making minicomputers.

In some ways, the museum founders and curators like to think 500 years into the future. “The last 70 years we’ve progressed from mechanical calculators to computers so fast they almost transcend human understanding,” Spicer says. “And yet for the types of problems they are being asked to solve, they are never fast enough. What can we expect in just the next 20 years, let alone the next century? CHM exists to keep an object-based record of this stunning progress.”

Exascale computing, a billion billion calculations per second, is not a final goal in and of itself. Rather it is another stage in what has been a steady rocket blast in computing power since the 1970s. Such capacity represents a thousandfold increase over Ranger, the first ‘Path to Petascale’ computer that came into operation in 2008. Experts say that the open science community may hit the Exascale era by 2021.

“I’m hoping we’ll do a new exhibit here when that time comes,” Spicer concludes, “as it will mark a milestone unimaginable to the original inventors of the computer and the culmination of decades of careful, incremental change. In science, computing power equals discovery. Exascale computing will give us new, thrilling new ways of seeing the world and of solving the critical problems that humanity is facing right now.”


Source: Faith Singer-Villalobos, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire