TACC Highlights Science and Engineering Problems Solved with Supercomputers and AI

January 25, 2018

Jan. 25, 2018 — Artificial intelligence represent a new approach scientists can use to interrogate data, develop hypotheses, and make predictions, particularly in areas where no overarching theory exists.

Traditional applications on supercomputers (also know as high-performance computers [HPC]) start from “first principles” — typically mathematical formulas representing the physics of a natural system — and then transform them into a problem that can be solved by distributing the calculations to many processors.

By contrast, machine learning and deep learning — two subsets of the field of artificial intelligence — take advantage of the availability of powerful computers and very large datasets to find subtle correlations in data and rapidly simulate, test and optimize solutions. These capabilities enable scientists to derive the governing models (or workable analogs) for complex systems that cannot be modeled from first principles.

Machine learning involves using a variety of algorithms that “learn” from data and improve performance based on real-world experience. Deep learning, a branch of machine learning, relies on large data sets to iteratively “train” many-layered neural networks, inspired by the human brain. These trained neural networks are then used to “infer” the meaning of new data.

Training can be a complex and time-consuming activity, but once a model has been trained, it is fast and easy to interpret each new piece of data accordingly in order to recognize, for example, cancerous versus healthy brain tissue or to enable a self-driving vehicle to identify a pedestrian crossing a street.

In Search of Deep Learning Trainers: Heavy Computation Required

Researchers are using Stampede2 — a Dell/Intel system at the Texas Advanced Computing Center (TACC) that is one of the world’s fastest supercomputers and the fastest at any U.S. university — to advance machine and deep learning. Image courtesy of TACC.

Just like traditional HPC, training a deep neural network or running a machine learning algorithm requires extremely large numbers of computations (quintillions!) – theoretically making them a good fit for supercomputers and their large numbers of parallel processors.

Training a deep neural network to act as an image classifier, for instance, requires roughly 1018 single precision operations (an exaFLOPS). Stampede2 — a Dell/Intel system at the Texas Advanced Computing Center (TACC) that is one of the world’s fastest supercomputers and the fastest at any U.S. university — can perform approximately two times 1016

Logically, supercomputers should be able to train deep neural networks rapidly. But in the past, such training has required hours, days or even months to complete (as was the case with Google’s AlphaGo).

Overcoming Bottlenecks in Neural Networks

With frameworks optimized for modern CPUs, however, experts have recently been able to train deep neural network models in minutes. For instance, researchers from TACC, the University of California, Berkeley and the University of California, Davis used 1024 Intel Xeon Scalable processors to complete a 100-epoch ImageNet training with AlexNet in 11 minutes, the fastest that such training has ever been reported. Furthermore, they were able to scale to 1600 Intel Xeon Scalable processors and finish the 90-epoch ImageNet training with ResNet-50 in 31 minutes without losing accuracy.

These efforts at TACC (and similar ones elsewhere) show that one can effectively overcome bottlenecks in fast deep neural network training with high-performance computing systems by using well-optimized kernels and libraries, employing hyper-threading, and sizing the batches of training data properly.

In addition to Caffe, which the researchers used for the ImageNet training, TACC also supports other popular CPU- and GPU-optimized deep learning frameworks, such as MXNet and TensorFlow, and is creating an extensive environment for machine and deep learning research.

Though mostly done as a proof-of-concept showing how HPC can be used for deep learning, high-speed, high-accuracy image classification can be useful in characterizing satellite imagery for environmental monitoring or labeling nanoscience images obtained by scanning electron microscope.

This fast training will impact the speed of science, as well as the kind of science that researchers can explore with these new methods.

Successes in Critical Applications

While TACC staff explore the potential of HPC for artificial intelligence, researchers from around the country are using TACC supercomputers to apply machine learning and deep learning to science and engineering problems ranging from healthcare to transportation.

For instance, researchers from Tufts University and the University of Maryland, Baltimore County, used Stampede1 to uncover the cell signaling network that determines tadpole coloration. The research helped identify the various genes and feedback mechanisms that control this aspect of pigmentation (which is related to melanoma in humans) and reverse-engineered never-before-seen mixed coloration in the animals.

They are exploring the possibility of using this method to uncover the cell signaling that underlies various forms of cancer so new therapies can be developed.

In another impressive project, deep learning experts at TACC collaborated with researchers at the University of Texas Center for Transportation Research and the City of Austin to automatically detect vehicles and pedestrians at critical intersections throughout the city using machine learning and video image analysis.

The work will help officials analyze traffic patterns to understand infrastructure needs and increase safety and efficiency in the city. (Results of the large-scale traffic analyses were presented at IEEE Big Data in December 2017 and the Transportation Research Board Annual Meeting in January 2018.)

In another project, George Biros, a mechanical engineering professor at the University of Texas at Austin, used Stampede2 to train a brain tumor classification systemthat can identify brain tumors (gliomas) and different types of cancerous regions with greater than 90 percent accuracy — roughly equivalent to an experienced radiologist.

The image analysis framework will be deployed at the University of Pennsylvania for various clinical studies of gliomas.

Through these and other research and research-enabling efforts, TACC has shown that HPC architectures are well suited to machine learning and deep learning frameworks and algorithms. Using these approaches in diverse fields, scientists are beginning to develop solutions that will have near-term impacts on health and safety, not to mention materials science, synthetic biology and basic physics.

The Artificial Intelligence at TACC Special Report showcases notable examples for this growing area of research. Check back for more advances and applications.


Source: Aaron Dubrow, TACC

Shares
) start from “first principles” Read more…

" share_counter=""]
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire