TACC Software Helps Researchers Visualize Science With Greater Fidelity

August 13, 2015

Aug. 13 — When scientists run experiments–whether physically smashing atoms at the Large Hadron Collider or virtually simulating future weather–the output is often a huge set of numbers incomprehensible to the ordinary human brain.

To tame the data and put it into a form that our minds can understand, researchers use scientific visualization.

In its simplest form, scientific visualization can be a graph or chart. But in cases where researchers need detailed information to draw insights–say to understand how a protein functions in cancer and to design a drug to combat it–scientific visualization can be quite complex.

The science of scientific visualization is quite complex, too. To give structure, order, color and form to multi-dimensional data requires powerful software. And as datasets grow, scientific visualization increasingly requires advanced computing resources as well.

This is something that Paul Navratil at the Texas Advanced Computing Center (TACC) knows well. As manager of the Scalable Visualization Technologies group, he’s worked for the past decade as part of a team that helps scientists visualize the data that comes off on some of the most powerful supercomputers in the world.

Modeling hurricanes in real-time as they barrel toward the Gulf Coast; assisting cardiac researchers to simulate blood flow through a congested heart; visualizing the formation of galaxies during the Dark Ages of the universe–Navratil has seen it all.

He’s also watched the landscape of scientific visualization change in response to evolving trends in hardware and software.

In fact, Navratil is actively involved in upending the supremacy of rasterization, a method that takes vector graphics and converts them into pixels, or dots, for display, printing or storage.

Vector graphics use points, lines, curves, and polygons–all based on mathematical expressions–to represent images in computer graphics. But modern printers and displays need that information converted to dots in order to use it. Rasterization has been the dominant conversion technique, but Navratil and others are advancing “ray tracing,” an alternative visualization method. Ray tracing has a history as long as rasterization’s, and recently become advantageous, thanks to new hardware and methods.

With support from the National Science Foundation (NSF), Navratil is leading an effort to design a new framework that would allow the tens of thousands of scientists and engineers who use the nation’s supercomputers to easily add ray tracing visualizations to their research, regardless of the type of computing system or hardware they are using.

Rasterization Vs. Ray Tracing

Whereas rasterization works by projecting a flat surface onto the 3-D model of an object, scene or person, ray tracing simulates the photons of light as they bounce from a light source off an object and into our eyes, based on the laws of optics.

This physically realistic rendering has a number of benefits. It creates much more realistic reflections and shading, which helps our minds understand the spatial relationships between the parts of the visualization. And since the objects being rendered are described computationally, according to their specific material properties and shape, they are also much more scientifically accurate.

Navratil uses the metaphor of a Wild West movie set to describe the difference.

“Rasterization looks realistic from the outside, but you can’t explore beyond the surface,” he explained. Ray tracing on the other hand is like a real street in a Western ghost town. “You can walk into the saloon and sit down at the bar.”

This may not be an important distinction for some applications, but for scientists trying to understand the deep mysteries of the universe, precise information is required.

New Hardware Architecture Enables New Capabilities 

Computer processing speeds were once the bottleneck preventing individuals from using ray tracing routinely in their research. But as microprocessors have become faster, memory access and communication are now the primary obstacles.

The new software Navratil and his collaborators developed, GraviT (pronounced “gravity”), automatically recognizes the type of problem a researcher is working on and the configuration of the system he or she is using, and then appropriately distributes data from the simulation to multiple computer processors–potentially thousands of them–for visualization.

The process requires little knowledge or understanding of visualization by the researchers, so they can focus their efforts on their specific science questions and not the science of software engineering.

The project is a collaboration among computer and computational scientists at TACC, the University of Oregon, the University of Utah, Intel Corporation and ParaView, a company that designs leading scientific visualization software. Hank Childs (Oregon) and Charles Hanson (Utah) serve as co-principal investigators for the project.

“Different ways of visualizing data have come and gone over the years based on the underlying hardware,” said Daniel S. Katz, a program director at NSF. “Software based ray-tracing is now viable again. To bring it into the future, so it works on current and future hardware, we need sustainable software. This work can be incorporated into different visualization packages and into the community of visualization tools.”

In designing the software, the research team looked ahead to a time in the near future when scientists working on supercomputers in the cloud will be creating simulations so big that they can’t easily be moved for rendering. (This is already the case with many of the researchers who use the nation’s supercomputers and many believe it will be the norm in the future.)

Such simulations will require visualizing the data locally, even as the simulation is running–a process known as “in-situ visualization.”

In this scenario, simulation data is never written to disk and stored. Simulations are simply visualized as the data is processed. This idea breaks the age-old paradigm of separating modeling from visualization, which was typically done afterward as a post-processing step.

In Spring 2015, the researchers released the first component of the system, called GluRay, as an open source tool on GitHub. GluRay lets researchers visualize their research on distributed computers, regardless of the type of hardware or architecture the computer uses.

The team plans to release the beta version of GraviT in the Fall. GraviT extends GluRay by scheduling work across multiple nodes of a supercomputer, particularly when the total data is larger than available memory. GraviT also provides an advanced interface for application developers who want to use more ray tracing capabilities and improve their performance.

Helping Scientists Across Disciplines

Working with test problems from teams of researchers in diverse fields, Navratil and company have already seen great gains using ray tracing on high-performance computers, facilitated by GluRay.

Geologists using the software to explore how water flows through limestone karsts in Florida experienced improved depth perception in their visualizations and consequently a better understanding of how the aquifer is recharged through thumb-sized holes in the limestone. Other researchers have used the software for astrophysics simulations and seismic analysis.

Beyond the improved visual fidelity that GraviT will provide, there’s another reason that Navratil and his team believe their research will prove useful to science. It turns out that many phenomena that scientists study look a lot like ray tracing.

“Whether it’s fluid flow or stellar magnetism, these problems involve tracing particles,” Navratil said. “For all of these problems, the solutions we’re developing will be a big help.”

Source: Aaron Dubrow, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cos Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over th Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire