TACC Supercomputers Help Researchers Design Patient-Specific Cancer Models

January 3, 2018

Jan. 3, 2018 — Attempts to eradicate cancer are often compared to a “moonshot” — the successful effort that sent the first astronauts to the moon.

But imagine if, instead of Newton’s second law of motion, which describes the relationship between an object’s mass and the amount of force needed to accelerate it, we only had reams of data related to throwing various objects into the air.

This, says Thomas Yankeelov, approximates the current state of cancer research: data-rich, but lacking governing laws and models.

The solution, he believes, is not to mine large quantities of patient data, as some insist, but to mathematize cancer: to uncover the fundamental formulas that represent how cancer, in its many varied forms, behaves.

Model of tumor growth in a rat brain before radiation treatment (left) and after one session of radiotherapy (right). The different colors represent tumor cell concentration, with red being the highest. The treatment reduced the tumor mass substantially (Lima et. al. 2017, Hormuth et. al. 2015).

“We’re trying to build models that describe how tumors grow and respond to therapy,” said Yankeelov, director of the Center for Computational Oncology at The University of Texas at Austin (UT Austin) and director of Cancer Imaging Research in the LIVESTRONG Cancer Institutes of the Dell Medical School. “The models have parameters in them that are agnostic, and we try to make them very specific by populating them with measurements from individual patients.”

The Center for Computational Oncology (part of the broader Institute for Computational Engineering and Sciences, or ICES) is developing complex computer models and analytic tools to predict how cancer will progress in a specific individual, based on their unique biological characteristics.

In December 2017, writing in Computer Methods in Applied Mechanics and Engineering, Yankeelov and collaborators at UT Austin and Technical University of Munich, showed that they can predict how brain tumors (gliomas) will grow and respond to X-ray radiation therapy with much greater accuracy than previous models. They did so by including factors like the mechanical forces acting on the cells and the tumor’s cellular heterogeneity. The paper continues research first described in the Journal of The Royal Society Interface in April 2017.

“We’re at the phase now where we’re trying to recapitulate experimental data so we have confidence that our model is capturing the key factors,” he said.

To develop and implement their mathematically complex models, the group uses the advanced computing resources at the Texas Advanced Computing Center (TACC). TACC’s supercomputers enable researchers to solve bigger problems than they otherwise could and reach solutions far faster than with a single computer or campus cluster.

According to ICES Director J. Tinsley Oden, mathematical models of the invasion and growth of tumors in living tissue have been “smoldering in the literature for a decade,” and in the last few years, significant advances have been made.

“We’re making genuine progress to predict the growth and decline of cancer and reactions to various therapies,” said Oden, a member of the National Academy of Engineering.

Model Selection and Testing

Over the years, many different mathematical models of tumor growth have been proposed, but determining which is most accurate at predicting cancer progression is a challenge.

In October 2016, writing in Mathematical Models and Methods in Applied Sciences, the team used a study of cancer in rats to test 13 leading tumor growth models to determine which could predict key quantities of interest relevant to survival, and the effects of various therapies.

They applied the principle of Occam’s razor, which says that where two explanations for an occurrence exist, the simpler one is usually better. They implemented this principle through the development and application of something they call the “Occam Plausibility Algorithm,” which selects the most plausible model for a given dataset and determines if the model is a valid tool for predicting tumor growth and morphology.

The method was able to predict how large the rat tumors would grow within 5 to 10 percent of their final mass.

“We have examples where we can gather data from lab animals or human subjects and make startlingly accurate depictions about the growth of cancer and the reaction to various therapies, like radiation and chemotherapy,” Oden said.

The team analyzes patient-specific data from magnetic resonance imaging (MRI), positron emission tomography (PET), x-ray computed tomography (CT), biopsies and other factors, in order to develop their computational model.

Each factor involved in the tumor response — whether it is the speed with which chemotherapeutic drugs reach the tissue or the degree to which cells signal each other to grow — is characterized by a mathematical equation that captures its essence.

“You put mathematical models on a computer and tune them and adapt them and learn more,” Oden said. “It is, in a way, an approach that goes back to Aristotle, but it accesses the most modern levels of computing and computational science.”

The group tries to model biological behavior at the tissue, cellular and cell signaling levels. Some of their models involve 10 species of tumor cells and include elements like cell connective tissue, nutrients and factors related to the development of new blood vessels. They have to solve partial differential equations for each of these elements and then intelligently couple them to all the other equations.

“This is one of the most complicated projects in computational science. But you can do anything with a supercomputer,” Oden said. “There’s a cascading list of models at different scales that talk to each other. Ultimately, we’re going to need to learn to calibrate each and compute their interactions with each other.”

From Computer to Clinic

The research team at UT Austin — which comprises 30 faculty, students, and postdocs — doesn’t only develop mathematical and computer models. Some researchers work with cell samples in vitro; some do pre-clinical work in mice and rats. And recently, the group has begun a clinical study to predict, after one treatment, how an individual’s cancer will progress, and use that prediction to plan the future course of treatment.

At Vanderbilt University, Yankeelov’s previous institution, his group was able to predict with 87 percent accuracy whether a breast cancer patient would respond positively to treatment after just one cycle of therapy. They are trying to reproduce those results in a community setting and extend their models by adding new factors that describe how the tumor evolves.

The combination of mathematical modeling and high-performance computing may be the only way to overcome the complexity of cancer, which is not one disease but more than a hundred, each with numerous sub-types.

“There are not enough resources or patients to sort this problem out because there are too many variables. It would take until the end of time,” Yankeelov said. “But if you have a model that can recapitulate how tumors grow and respond to therapy, then it becomes a classic engineering optimization problem. ‘I have this much drug and this much time. What’s the best way to give it to minimize the number of tumor cells for the longest amount of time?'”

Computing at TACC has helped Yankeelov accelerate his research. “We can solve problems in a few minutes that would take us 3 weeks to do using the resources at our old institution,” he said. “It’s phenomenal.”

According to Oden and Yankeelov, there are very few research groups trying to sync clinical and experimental work with computational modeling and state-of-the-art resources like the UT Austin group.

“There’s a new horizon here, a more challenging future ahead where you go back to basic science and make concrete predictions about health and well-being from first principles,” Oden said.

Said Yankeelov: “The idea of taking each patient as an individual to populate these models to make a specific prediction for them and someday be able to take their model and then try on a computer a whole bunch of therapies on them to optimize their individual therapy — that’s the ultimate goal and I don’t know how you can do that without mathematizing the problem.”

The research is supported by National Science Foundation, the U.S. Department of Energy, the National Council of Technological and Scientific Development, Cancer Prevention Research Institute of Texas and the National Cancer Institute.


Source: Aaron Dubrow, TACC

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This