TACC Supercomputers Power RNA-Seq Analysis Tools at Summer Bioinformatics Workshop

September 21, 2015

Sept. 21 — Undergraduate biology labs are designed to prepare students for real-life biology work. These labs usually involve tried and true exercises like animal dissections, investigating enzymes, and microscope work.While traditional lab work is important, the field is rapidly evolving with the proliferation of big data and burgeoning technology. Computation and biology are now inextricably linked, perhaps signaling a need to trade in goggles for time manipulating the command line. But is the field ready for this change?

“The primary purpose is to get this into the classroom so that students will be doing the same experiments and working with the same datasets as any biologist in a lab at an institution,” said Jason Williams, Education, Outreach, and Training Lead at iPlant.

The iPlant Collaborative, a cyberinfrastructure project that gives researchers access to advanced computing, recently polled biologists across the country and found that 95% are working with large datasets. However, nearly two-thirds of researchers had little to no experience in bioinformatics, and only one-third said their institutions had adequate computational resources.To address this clear need, Dave Micklos, Director of the DNA Learning Center partnered with iPlant to develop a program that exposes undergraduate faculty to computational biology. The three-year, National Science Foundation (NSF) funded project, RNA-Seq for the Next Generation, arms faculty with the tools needed to teach bioinformatics to students.

“The primary purpose is to get this into the classroom so that students will be doing the same experiments and working with the same datasets as any biologist in a lab at an institution,” said Jason Williams, Education, Outreach, and Training Lead at iPlant.

The project is also ensuring equal access to high performance computing (HPC) resources and training by targeting public and minority serving institutions.

“Our goal is to reach faculty and students who want to learn how to do next generation sequencing but don’t have analysis tools at their fingertips,” said Mona Spector, staff molecular geneticist at the DNA Learning Center.

For the next generation

The project is centered on obtaining and analyzing next generation RNA sequencing (RNA-seq) data, which requires HPC computing resources. The technique gives researchers the ability to generate and analyze their own genome-scale datasets and answer novel research problems related to the transcriptome of any cell.

Examining RNA gives scientists a clear picture of what genes are being expressed and what is functionally relevant to the genome. But sequencing this information often generates terabytes of data that must be stored, processed, and analyzed to decipher meaning.

“The average bench biologist cannot analyze this data on their own,” said Williams. “Their options are they can either ask a collaborator to analyze the data for them or hire somebody to try and analyze it.”In the first workshop held summer of 2014, 11 faculty convened at Cold Spring Harbor Laboratory to learn RNA-seq techniques and brainstorm ways to integrate the technology in their classes. The programming was repeated this summer in two different cities for 33 faculty.

“The faculty expertise at the workshops was varied in regards to their knowledge about RNA sequencing and their computer skills,” said Spector. “This mirrored the challenges in formulating ideas of how to teach coursework to students with different knowledge levels as well.”

Led by Spector and Williams, participants learned how to analyze RNA-seq data using iPlant resources: Green Line of the DNA Subway and Discovery Environment which feature a simple interface that makes it easy for faculty and students to perform bioinformatics. Using the Agave API, the DNA Subway platform provides its users access to some of the most powerful supercomputers in the world for data analysis: Stampede and Lonestar at the Texas Advanced Computing Center (TACC).

“It was nice to be part of a group where we all do one technique and come together to develop teaching materials,” said Ray Enke, Assistant Professor of Biology, James Madison University.

Prior to the 2015 workshops, 26 faculty submitted 104 RNA samples which were sequenced at Cold Spring Harbor Laboratory’s Genome Center and the data were uploaded to the Data Store. Over the course of the weeklong training, faculty learned how to analyze this data. These projects were diverse and ranged from analyzing testicular gene expression patterns in infertile mice to examining Arabidopsis immune system changes.

In collaborative sessions, the groups also brainstormed ways to implement this technology into classroom lectures and labs.

“We trained biologists so that they would feel comfortable bringing their own RNA-seq experiments into the classroom,” said Williams. “We want researchers to combine their own interests with their teaching and use DNA Subway as a tool to not only analyze data for themselves, but to work with students as well.”

Impact: A look at two participants

While RNA sequencing is considered a gold standard of experimentation in his field, Ray Enke, a faculty member at James Madison University, had never actually done it himself. With “zero experience coding,” Enke was intimidated to become involved with the RNA-seq project, but soon discovered how much he could benefit from instruction and networking with other researchers.”It was nice to be part of a group where we all do one technique and come together to develop teaching materials,” said Enke. “Not many of my colleagues are using RNA sequencing so it’s nice to have that network.”

For Enke, the program has been beneficial for both his research on gene expression during vertebrate eye development and translating this knowledge into the classroom. Currently, he is working to further integrate the techniques he’s learned into his upper level Advanced Molecular Biology class.

“My ultimate goal is to start out with a cellular system, isolate RNA, perform RNA-seq, and do all of the analysis and validation on my own,” said Enke. “I’m taking baby steps to get there.”

Another participant from Hamline University, Irina Makarevitch, had extensive experience with sequencing but needed help implementing RNA-seq into the classroom.

“I applied to the program so I could develop teaching applications and exchange ideas with other faculty like me,” said Makarevitch.After returning from the workshop Makarevitch implemented what she learned over the summer. Using data analyzed on the Green Line on maize, Makarevitch developed guided inquiries to allow students to analyze data on their own. The activity taught students to ask independent questions, discover genes, and build graphs to interpret data.

“Students liked the idea that they were doing a real research project, as opposed to something where everyone knows the answers but are just going through the motions,” said Makarevitch.

Next year, the team will offer virtual training based on many videos that have been recorded from previous trainings. Williams and Spector anticipate a sort of multiplier effect, where faculty can share findings with peers and increase the number of students using these tools.

“Essentially, we’re building a resource where any teacher in the country can get training information and do these experiments themselves,” Williams said.

Source: Makeda Easter, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire