TACC Supercomputers Power RNA-Seq Analysis Tools at Summer Bioinformatics Workshop

September 21, 2015

Sept. 21 — Undergraduate biology labs are designed to prepare students for real-life biology work. These labs usually involve tried and true exercises like animal dissections, investigating enzymes, and microscope work.While traditional lab work is important, the field is rapidly evolving with the proliferation of big data and burgeoning technology. Computation and biology are now inextricably linked, perhaps signaling a need to trade in goggles for time manipulating the command line. But is the field ready for this change?

“The primary purpose is to get this into the classroom so that students will be doing the same experiments and working with the same datasets as any biologist in a lab at an institution,” said Jason Williams, Education, Outreach, and Training Lead at iPlant.

The iPlant Collaborative, a cyberinfrastructure project that gives researchers access to advanced computing, recently polled biologists across the country and found that 95% are working with large datasets. However, nearly two-thirds of researchers had little to no experience in bioinformatics, and only one-third said their institutions had adequate computational resources.To address this clear need, Dave Micklos, Director of the DNA Learning Center partnered with iPlant to develop a program that exposes undergraduate faculty to computational biology. The three-year, National Science Foundation (NSF) funded project, RNA-Seq for the Next Generation, arms faculty with the tools needed to teach bioinformatics to students.

“The primary purpose is to get this into the classroom so that students will be doing the same experiments and working with the same datasets as any biologist in a lab at an institution,” said Jason Williams, Education, Outreach, and Training Lead at iPlant.

The project is also ensuring equal access to high performance computing (HPC) resources and training by targeting public and minority serving institutions.

“Our goal is to reach faculty and students who want to learn how to do next generation sequencing but don’t have analysis tools at their fingertips,” said Mona Spector, staff molecular geneticist at the DNA Learning Center.

For the next generation

The project is centered on obtaining and analyzing next generation RNA sequencing (RNA-seq) data, which requires HPC computing resources. The technique gives researchers the ability to generate and analyze their own genome-scale datasets and answer novel research problems related to the transcriptome of any cell.

Examining RNA gives scientists a clear picture of what genes are being expressed and what is functionally relevant to the genome. But sequencing this information often generates terabytes of data that must be stored, processed, and analyzed to decipher meaning.

“The average bench biologist cannot analyze this data on their own,” said Williams. “Their options are they can either ask a collaborator to analyze the data for them or hire somebody to try and analyze it.”In the first workshop held summer of 2014, 11 faculty convened at Cold Spring Harbor Laboratory to learn RNA-seq techniques and brainstorm ways to integrate the technology in their classes. The programming was repeated this summer in two different cities for 33 faculty.

“The faculty expertise at the workshops was varied in regards to their knowledge about RNA sequencing and their computer skills,” said Spector. “This mirrored the challenges in formulating ideas of how to teach coursework to students with different knowledge levels as well.”

Led by Spector and Williams, participants learned how to analyze RNA-seq data using iPlant resources: Green Line of the DNA Subway and Discovery Environment which feature a simple interface that makes it easy for faculty and students to perform bioinformatics. Using the Agave API, the DNA Subway platform provides its users access to some of the most powerful supercomputers in the world for data analysis: Stampede and Lonestar at the Texas Advanced Computing Center (TACC).

“It was nice to be part of a group where we all do one technique and come together to develop teaching materials,” said Ray Enke, Assistant Professor of Biology, James Madison University.

Prior to the 2015 workshops, 26 faculty submitted 104 RNA samples which were sequenced at Cold Spring Harbor Laboratory’s Genome Center and the data were uploaded to the Data Store. Over the course of the weeklong training, faculty learned how to analyze this data. These projects were diverse and ranged from analyzing testicular gene expression patterns in infertile mice to examining Arabidopsis immune system changes.

In collaborative sessions, the groups also brainstormed ways to implement this technology into classroom lectures and labs.

“We trained biologists so that they would feel comfortable bringing their own RNA-seq experiments into the classroom,” said Williams. “We want researchers to combine their own interests with their teaching and use DNA Subway as a tool to not only analyze data for themselves, but to work with students as well.”

Impact: A look at two participants

While RNA sequencing is considered a gold standard of experimentation in his field, Ray Enke, a faculty member at James Madison University, had never actually done it himself. With “zero experience coding,” Enke was intimidated to become involved with the RNA-seq project, but soon discovered how much he could benefit from instruction and networking with other researchers.”It was nice to be part of a group where we all do one technique and come together to develop teaching materials,” said Enke. “Not many of my colleagues are using RNA sequencing so it’s nice to have that network.”

For Enke, the program has been beneficial for both his research on gene expression during vertebrate eye development and translating this knowledge into the classroom. Currently, he is working to further integrate the techniques he’s learned into his upper level Advanced Molecular Biology class.

“My ultimate goal is to start out with a cellular system, isolate RNA, perform RNA-seq, and do all of the analysis and validation on my own,” said Enke. “I’m taking baby steps to get there.”

Another participant from Hamline University, Irina Makarevitch, had extensive experience with sequencing but needed help implementing RNA-seq into the classroom.

“I applied to the program so I could develop teaching applications and exchange ideas with other faculty like me,” said Makarevitch.After returning from the workshop Makarevitch implemented what she learned over the summer. Using data analyzed on the Green Line on maize, Makarevitch developed guided inquiries to allow students to analyze data on their own. The activity taught students to ask independent questions, discover genes, and build graphs to interpret data.

“Students liked the idea that they were doing a real research project, as opposed to something where everyone knows the answers but are just going through the motions,” said Makarevitch.

Next year, the team will offer virtual training based on many videos that have been recorded from previous trainings. Williams and Spector anticipate a sort of multiplier effect, where faculty can share findings with peers and increase the number of students using these tools.

“Essentially, we’re building a resource where any teacher in the country can get training information and do these experiments themselves,” Williams said.

Source: Makeda Easter, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire