TACC Texascale Days: Pushing Scientific Software to New Heights

September 15, 2021

Sept. 15, 2021 — In August 2021, TACC hosted its 6th Texascale Days event: an opportunity for researchers to use the Frontera supercomputer at full (or half) scale to run computing jobs that cannot be performed anywhere else in the world.

Texascale Days primarily enables full-day production science runs; however, in May 2021 TACC added a benchmarking day as part of the event.

“This benchmarking opportunity helps researchers answer questions like: ‘Can I run the problem at this scale? Does it work? Is it worth it?'” said John Cazes, TACC’s director of HPC and the organizer of the event. “Researchers use this time to think in more detail about what they want to run at this scale for 24 hours.”

Six science teams participated in the latest benchmarking day. Working in two-hour blocks, the teams tested their codes at up to 8,192 nodes – roughly 450,000 cores — to determine how a code performs at scale, or how improvements to the physics or computing schemes impact its performance.

Simulating Quantum Devices

Brian La Cour, who directs the Applied Research Lab (ARL)’s UT Center for Quantum Research, participated in the most recent Texascale Days event. La Cour is working with Mark Selover (UT Physics), Brajesh Gupt (TACC), and Noah Davis (ARL) on large-scale quantum computer simulations as part of a Frontera Pathways project.

Quantum computers promise to revolutionize computing yet are still in the early stages of development. Classical simulation on high-performance computers provides a means to validate noisy, intermediate-scale quantum (NISQ) devices, but this is challenging for large problems.

“In 2016, for example, a 40-qubit simulation was performed on Stampede1 using the qHipster software package on 1,024 nodes,” La Cour explained. “For each additional qubit, the memory required for simulation doubles.”

La Cour and his team used 8,192 nodes on Frontera to perform a simulation of a 45-qubit random circuit similar to the one used in Google’s 2019 quantum supremacy experiment. The simulations were performed using the Quantum Exact Simulation Toolkit (QuEST) developed by their collaborators from the University of Oxford.

“With some custom modifications to the software developed by Mark Selover, we believe we can push this to 46 qubits in time for the next Texascale event,” La Cour said. “To our knowledge, that would be the largest random circuit simulation in the world.”

Trial and Error, at Scale

Michael Norman, a professor of Physics at the University of California, San Diego, used his two-hour test slot to see whether Enzo-E — a branch of the community-developed adaptive mesh refinement simulation code enabling multi-physics hydrodynamic astrophysical calculations — would scale up to 4,000 nodes with all of its physics and I/O capabilities engaged.

“We encountered some difficulties, but in the end were able to run the code without crashing, so a partial success,” Norman said. Despite the challenges, “this test time was just what we needed to prepare for a full physics production run later this fall.”

Andre Merzky, a senior research programmer at Rutgers University, experienced another useful trial and error situation using Frontera. He applied for a two-hour scaling slot to investigate a temporary slowdown his team had experienced during their last full-scale production run.

“We suspected the shared file system to be the cause of the issue,” he said. “We were successful in reproducing the problem, but made limited progress in understanding the underlying causes, so more work will be needed to resolve it.”

TACC experts provided him with system performance metrics for this run.

“Our numerical performance seems not to be as good as it could be,” Merzky wrote. “That in itself may not be much of a problem, but we’re happy to have those metrics to perform some cross-checking with expected and measured performance.”

More immediately successful were efforts by Hyungjun Lee and Feliciano Giustino of the Oden Institute at UT Austin to test the parallel performance of SternheimerGW, an open-source electronic structure software developed by the group used for calculating the excited-state properties of materials, such as Bi2Se3 (bismuth selenide), the prototypical topological insulator.

For Texascale Days, the team introduced OpenMP parallelization via multi-threading libraries. Also, “in order to minimize I/O impact on the file system, we implemented the low I/O mode which turns out to be essential in very large-scale runs,” Lee said.

With these simple modifications, the team demonstrated strong-scaling performance reaching 76 percent of the ideal speedup on up to 458,752 cores.

Extending Gravitational Wave Detection

The very first gravitational waves detected by LIGO in 2015 originated from two black holes spiraling around each other and merging together to form a single black hole. However, scientists believe some gravitational wave sources are not detectable by even the most advanced ground-based detectors. These include black hole binary mergers where the mass ratio of the system is in the range of 1:100 to 1:1000.
A careful comparison of a gravitational wave signal with a library of possible waveforms constructed from numerical simulations allows scientists to untangle information about a gravitational wave’s source.

“Numerical simulations of large mass ratio binaries are extremely computationally expensive and need scalable algorithms with spacetime adaptivity,” said Milinda Fernando, a post-doctoral fellow at the Oden Institute. “Existing codes for numerical relativity and relativistic magnetohydrodynamics do not scale well on modern heterogeneous clusters, which is a major impediment towards scientific progress in these areas.”

To overcome these challenges, the Dendro-GR simulation framework was developed by a computational team lead by Hari Sundar, Associate Professor at the School of Computing, University of Utah. During the recent Texascale Days, Fernando scaled up Dendro-GR to 4,096 Frontera nodes with excellent parallel efficiency. For the study, they used approximately 500,000 unknowns per core, with the largest problem containing 118 billion unknowns on the grid.

“These algorithmic enhancements allow it to be far more scalable than any existing such code,” said Omar Ghattas, chair in Computational Geosciences at UT Austin, chief scientist on Frontera, and a collaborator on the project. “Our interest moving forward is to augment the forward modeling capabilities of Dendro-GR with an inversion capability to provide higher fidelity gravitational wave detections.”

New Nuclei Studies

While most teams used their time to test code scaling, others pushed their computational studies further, enabling new and exciting discoveries.

Grigor Sargsyan, a graduate student at Louisiana State University in the group of Assistant Professor Kristina Launey, performed calculations during Texascale Days aimed at obtaining descriptions of several nuclei with astrophysical significance.

They calculated the wavefunctions of two isotopes — 7Li and 7Be — that play a vital role in the creation of heavier elements in the early stages of our universe. They also modeled the most common oxygen isotope, 16O — “the third most abundant in our solar system after hydrogen and helium, whose importance for the existence of life cannot be overstated,” Sargsyan said.

[The team previously simulated another alpha-conjugate nucleus, 8Be, on Frontera, with the results submitted to Physical Review Letters in August 2021 (preprint available at https://arxiv.org/abs/2107.10389).]

Descriptions of alpha-conjugate nuclei (nuclei with multiples of two protons and two neutrons) are challenging to derive from first principle approaches. However, it is possible to derive them with modern multi-petascale supercomputers like Frontera, according to Sargsyan — assuming you can access a large enough portion of the full system.

“With the current limit of 2,048 nodes for general production on Frontera, we are unable to run calculations for these isotopes in large enough model spaces,” said Sargsyan. “Texascale Days allows us to perform calculations in ultra-large model spaces required to describe this challenging process.”

Benchmarking Success

From first-ever software runs, to scaling studies, to science at extreme scale, Texascale Days is providing parallel computing leaders and software developers the opportunity to push the limits of their codes.

“We’re preparing the community for future runs on Frontera and the exascale systems of tomorrow, while stress testing our system and giving us insights into how to improve performance,” Cazes concluded.

For full article and graphics, click here.


Source: Aaron Dubrow, Texas Advanced Computing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Natcast/NSTC Issues Roadmap to Implement CHIPS and Science Act

May 29, 2024

Yesterday, CHIPS for America and Natcast, the operator of the National Semiconductor Technology Center (NSTC), released a roadmap of early steps for implementing portions of the ambitious $5 billion program. Natcast is t Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help uncover new insights about materials science. The findings of Read more…

Microsoft’s ARM-based CPU Cobalt will Support Windows 11 in the Cloud

May 29, 2024

Microsoft's ARM-based CPU, called Cobalt, is now available in the cloud for public consumption. Cobalt is Microsoft's first homegrown CPU, which was first announced six months ago. The cloud-based Cobalt VMs will support Read more…

2024 Winter Classic Finale! Gala Awards Ceremony

May 28, 2024

We wrapped up the competition with our traditional Gala Awards Ceremony. This was an exciting show, given that only 40 points or so separated first place from fifth place after the Google GROMACS Challenge and heading in Read more…

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and flexibility of the platform’s AI capabilities. Announced Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help un Read more…

watsonx

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and fl Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire