TACC’s Stampede1 Used to Simulate and Study Dynamics of Red Blood Cells

March 15, 2018

March 15, 2018 — If you think of the human body, microvascular networks comprised of the smallest blood vessels are a central part of the body’s function. They facilitate the exchange of essential nutrients and gasses between the blood stream and surrounding tissues, as well as regulate blood flow in individual organs.

While the behavior of blood cells flowing within single, straight vessels is a well-known problem, less is known about the individual cellular-scale events giving rise to blood behavior in microvascular networks.

To better understand this, researchers Peter Balogh and Prosenjit Bagchi published a recent study in the Biophysical Journal. Bagchi resides in the Mechanical and Aerospace Engineering Department at Rutgers University, and Balogh is his PhD student.

To the researchers’ knowledge, theirs is the first work to simulate and study red blood cells flowing in physiologically realistic microvascular networks, capturing both the highly complex vascular architecture as well as the 3D deformation and dynamics of each individual red blood cell.

Balogh and Bagchi developed and used a state-of-the-art simulation code to study the behavior of red blood cells as they flow and deform through microvascular networks. The code simulates 3D flows within complex geometries, and can model deformable cells, such as red blood cells, as well as rigid particles, such as inactivated platelets or some drug particles.

“Our research in microvascular networks is important because these vessels provide a very strong resistance to blood flow,” said Bagchi. “How much energy the heart needs to pump blood, for example, is determined by these blood vessels. In addition, this is where many blood diseases take root. For example, for someone with sickle cell anemia, this is where the red blood cells get stuck and cause enormous pain.”

One of the paper’s findings involves the interaction between red blood cells and the vasculature within the regions where vessels bifurcate. They observed that as red blood cells flow through these vascular bifurcations, they frequently jam for very brief periods before proceeding downstream. Such behavior can cause the vascular resistance in the affected vessels to increase, temporarily, by several orders of magnitude.

There have been many attempts to understand blood flow in microvascular networks dating back to the 1800s and French physician and physiologist, Jean-Louis-Marie Poiseuille, whose interest in the circulation of blood led him to conduct a series of experiments on the flow of liquids in narrow tubes. He also formulated a mathematical expression for the non-turbulent flow of fluids in circular tubes.

Updating this research, Balogh and Bagchi use computation to enhance the understanding of blood flow in these networks. Like many other groups, they originally modelled capillary blood vessels as small, straight tubes and predicted their behavior. “But if you look at the capillary-like vessels under the microscope, they are not straight tubes…they are very winding and continuously bifurcate and merge with each other,” Bagchi said. “We realized that no one else had a computational tool to predict the flow of blood cells in these physiologically realistic networks.”

“This is the first study to consider the complex network geometry in 3D and simultaneously resolve the cell details in 3D,” Balogh said. “One of the underlying goals is to better understand what is occurring in these very small vessels in these complex geometries. We hope that by being able to model this next level of detail we can add to our understanding of what is actually occurring at the level of these very small vessels.”

In terms of cancer research, this model may have tremendous implications. “This code is just the beginning of something really big,” Bagchi said.

In the medical field today, there are advanced imaging systems that image the capillary network of blood vessels, but it’s sometimes difficult for those imaging systems to predict the blood flow in every vessel simultaneously. “Now, we can take those images, put them into our computational model, and predict even the movement of each blood cell in every capillary vessel that is in the image,” Bagchi said.

This is a huge benefit because the researchers can see whether the tissue is getting enough oxygen or not. In cancer research, angiogenesis — the physiological process through which new blood vessels form from pre-existing vessels — is dependent upon the tissue getting enough oxygen.

The team is also working on modeling targeted drug delivery, particularly for cancer. In this approach nanoparticles are used to carry drugs and target the specific location of the disease. For example, if someone has cancer in the liver or pancreas, then those specific organs are targeted. Targeted drug delivery allows increased dose of the drug so other organs don’t get damaged and the side effects are minimized.

“The size and shape of these nanoparticles determine the efficiency of how they get transported through the blood vessels,” Bagchi said. “We think the architecture of these capillary networks will determine how well these particles are delivered. The architecture varies from organ to organ. The computational code we developed helps us understand how the architecture of these capillary networks affects the transport of these nanoparticles in different organs.”

This research used computational simulations to answer questions like: How accurately can a researcher capture the details of every blood cell in complex geometries? How can this be accomplished in 3D? How do you take into account the many interactions between these blood cells and vessels?

“In order to do this, we need large computing resources,” Bagchi said. “My group has been working on this problem using XSEDE resources from the Texas Advanced Computing Center. We used Stampede1 to develop our simulation technique, and soon we will be moving to Stampede2 because we’ll be doing even larger simulations. We are using Ranch to store terabytes of our simulation data.”

The eXtreme Science and Engineering Discovery Environment (XSEDE) is a National Science Foundation-funded virtual organization that integrates and coordinates the sharing of advanced digital services — including supercomputers and high-end visualization and data analysis resources — with researchers nationally to support science. Stampede1, Stampede2, and Ranch are XSEDE-allocated resources. The simulations reported in the paper took a few weeks of continuous simulation and resulted in terabytes of data.

In terms of how this research will help the medical community, Bagchi said: “Based on an image of capillary blood vessels in a tumor, we can simulate it in 3D and predict the distribution of blood flow and nanoparticle drugs inside the tumor vasculature, and, perhaps, determine the optimum size, shape and other properties of nanoparticles for most effective delivery,” Bagchi said. “This is something we’ll be looking at in the future.”

To read the original article, click here.


Source: Faith Singer-Villalobos, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire