The Entanglement Advantage: Sensing Networks Achieve Greater Precision Through Quantum Entanglement

November 29, 2022

Nov. 29, 2022 — For the first time, scientists have entangled atoms for use as networked quantum sensors, specifically, atomic clocks and accelerometers. The research team’s experimental setup yielded ultraprecise measurements of time and acceleration. Compared to a similar setup that does not draw on quantum entanglement, their time measurements were 3.5 times more precise, and acceleration measurements exhibited 1.2 times greater precision.

Entanglement, a special property of nature at the quantum level, is a correlation between two or more objects. A research team recently harnessed entanglement to develop more precise networked quantum sensors. Credit: Brookhaven.

The result, published in Nature, is supported by Q-NEXT, a U.S. Department of Energy (DOE) National Quantum Information Science Research Center led by DOE’s Argonne National Laboratory. The research was conducted by scientists at Stanford University, Cornell University and DOE’s Brookhaven National Laboratory.

The impact of using entanglement in this configuration was that it produced better sensor network performance than would have been available if quantum entanglement were not used as a resource,” said Mark Kasevich, lead author of the paper, a member of Q-NEXT, the William R. Kenan, Jr. professor in the Stanford School of Humanities and Sciences and professor of physics and of applied physics. ​For atomic clocks and accelerometers, ours is a pioneering demonstration.”

What is Quantum Entanglement? How Does It Apply to Sensors?

  • Entanglement, a special property of nature at the quantum level, is a correlation between two or more objects. When two atoms are entangled, one can measure the properties of both atoms by observing only one. This is true no matter how much distance — even if it’s light-years — separates the entangled atoms.
  • A helpful everyday analogy: A red marble and a blue marble are placed in a box. If you draw a red marble from the box, you know, without having to look at the other one, that it’s blue. The color of the marbles is correlated, or entangled.
  • In the quantum realm, entanglement is subtler. An atom can take on multiple states (colors) at once. If our marbles were like atoms, each marble would be both red and blue at the same time. Neither is fully red or blue while it sits the box. The quantum marble ​decides” its color only at the moment of revelation. And once you draw one marble of ​decided” color, you know the color of its entangled partner.
  • To take a measurement of one member of an entangled pair is effectively to take a simultaneous reading of both.
  • Taking this further: Two entangled clocks are practically equivalent to a single clock with two displays. Time measurements taken using entangled clocks can be more precise than measurements from two separate, synchronized clocks.

Why It Matters

Greater sensitivity in atomic clocks and accelerometers would lead to more precise timekeeping and navigation systems, such as those used in global positioning systems, in defense and in broadcast communications. Ultraprecise clocks are also used in finance and trading.

GPS tells me where I am to about a meter right now,” Kasevich said. ​But what if I wanted to know where I was to within 10 centimeters? That’s what the impact of better clocks would be.”

A Note on Ultraprecise Clocks

One can mark the passage of time by counting the number of pulses in an electromagnetic wave, just as you would count the ticks of a clock. If you know that a particular wave pulses 6 billion times per second, you know that, once you count 6 billion crests of the wave, one second has passed. So knowing the exact frequency of a microwave gives one a precise way to track time.

How It Works

The entanglement: Rubidium atoms, trapped inside a cavity, are separated into two groups of about 100,000 atoms each. The groups sit between two mirrors. Light is made to bounce back and forth between the mirrors, tracing its way through the groups of atoms with every shot. The ricocheting light entangles them.

The sensing: A microwave ripples through the two groups of atoms. The atoms that happen to resonate with the microwave’s particular frequency respond by changing to a different state, like the wine glass that vibrates when a soprano hits just the right note.

Similarly, when a particular acceleration is applied to the atomic groups, some fraction of the atoms in each group responds by changing state.

The measurement: The two entangled atomic groups behave like two faces of a single clock, or two readings of one accelerometer.

The research team measured the number of atoms that changed state — the ones that vibrated like a wine glass — in each group.

Then they used the numbers to calculate the difference in the microwave frequencies applied to the two groups, and therefore the difference in the groups’ readings of time or acceleration.

Increased precision: The Kasevich team found that entanglement improves the precision in the frequency or acceleration difference read by the displays.

In their setup, the measurement of time in two locations was 3.5 times more precise when the clocks were entangled than if they were operating independently. For acceleration, the measurement was 1.2 times more precise with entanglement.

Impact

If you want to know how long something takes, you might look at one clock as a starting point and then run to another room to look at another clock, the end point,” Kasevich said. ​Our method exploits the entanglement principle to make that comparison as precise as possible.”

The researchers also successfully networked four groups of atoms in four separate locations using this configuration.

In the team’s experiment, the two groups of atoms were separated by about 20 micrometers, close to the average width of a human hair.

Their work means that time or acceleration can be compared, with unprecedented sensitivity, between four separate, albeit close-together, locations.

In the future, we want to push them out to longer distances. The world wants clocks whose time can be compared. It’s the same with accelerometers. There are sensing configurations where you want to be able to read out the difference in the acceleration of one group with respect to another. We were able to show how to do that,” Kasevich said.

“This is a tour de force result from Mark and his team,” said Q-NEXT Deputy Director JoAnne Hewett, who is also the SLAC National Accelerator Laboratory associate director of fundamental physics and chief research officer as well as a Stanford professor of particle physics and astrophysics. ​”This means we can harness entanglement to develop sensors that are far more powerful than those we use today. We are another step closer to wielding quantum phenomena to improve our everyday lives.”

This work was supported by the DOE’s Office of Science National Quantum Information Science Research Centers as part of the Q-NEXT center.

About Q-NEXT

Q-NEXT is a U.S. Department of Energy National Quantum Information Science Research Center led by Argonne National Laboratory. Q-NEXT brings together world-class researchers from national laboratories, universities and U.S. technology companies with the goal of developing the science and technology to control and distribute quantum information. Q-NEXT collaborators and institutions will create two national foundries for quantum materials and devices, develop networks of sensors and secure communications systems, establish simulation and network test beds, and train the next-generation quantum-ready workforce to ensure continued U.S. scientific and economic leadership in this rapidly advancing field.

About Argonne

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.


Source: Leah Hesla, Argonne Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire