The Entanglement Advantage: Sensing Networks Achieve Greater Precision Through Quantum Entanglement

November 29, 2022

Nov. 29, 2022 — For the first time, scientists have entangled atoms for use as networked quantum sensors, specifically, atomic clocks and accelerometers. The research team’s experimental setup yielded ultraprecise measurements of time and acceleration. Compared to a similar setup that does not draw on quantum entanglement, their time measurements were 3.5 times more precise, and acceleration measurements exhibited 1.2 times greater precision.

Entanglement, a special property of nature at the quantum level, is a correlation between two or more objects. A research team recently harnessed entanglement to develop more precise networked quantum sensors. Credit: Brookhaven.

The result, published in Nature, is supported by Q-NEXT, a U.S. Department of Energy (DOE) National Quantum Information Science Research Center led by DOE’s Argonne National Laboratory. The research was conducted by scientists at Stanford University, Cornell University and DOE’s Brookhaven National Laboratory.

The impact of using entanglement in this configuration was that it produced better sensor network performance than would have been available if quantum entanglement were not used as a resource,” said Mark Kasevich, lead author of the paper, a member of Q-NEXT, the William R. Kenan, Jr. professor in the Stanford School of Humanities and Sciences and professor of physics and of applied physics. ​For atomic clocks and accelerometers, ours is a pioneering demonstration.”

What is Quantum Entanglement? How Does It Apply to Sensors?

  • Entanglement, a special property of nature at the quantum level, is a correlation between two or more objects. When two atoms are entangled, one can measure the properties of both atoms by observing only one. This is true no matter how much distance — even if it’s light-years — separates the entangled atoms.
  • A helpful everyday analogy: A red marble and a blue marble are placed in a box. If you draw a red marble from the box, you know, without having to look at the other one, that it’s blue. The color of the marbles is correlated, or entangled.
  • In the quantum realm, entanglement is subtler. An atom can take on multiple states (colors) at once. If our marbles were like atoms, each marble would be both red and blue at the same time. Neither is fully red or blue while it sits the box. The quantum marble ​decides” its color only at the moment of revelation. And once you draw one marble of ​decided” color, you know the color of its entangled partner.
  • To take a measurement of one member of an entangled pair is effectively to take a simultaneous reading of both.
  • Taking this further: Two entangled clocks are practically equivalent to a single clock with two displays. Time measurements taken using entangled clocks can be more precise than measurements from two separate, synchronized clocks.

Why It Matters

Greater sensitivity in atomic clocks and accelerometers would lead to more precise timekeeping and navigation systems, such as those used in global positioning systems, in defense and in broadcast communications. Ultraprecise clocks are also used in finance and trading.

GPS tells me where I am to about a meter right now,” Kasevich said. ​But what if I wanted to know where I was to within 10 centimeters? That’s what the impact of better clocks would be.”

A Note on Ultraprecise Clocks

One can mark the passage of time by counting the number of pulses in an electromagnetic wave, just as you would count the ticks of a clock. If you know that a particular wave pulses 6 billion times per second, you know that, once you count 6 billion crests of the wave, one second has passed. So knowing the exact frequency of a microwave gives one a precise way to track time.

How It Works

The entanglement: Rubidium atoms, trapped inside a cavity, are separated into two groups of about 100,000 atoms each. The groups sit between two mirrors. Light is made to bounce back and forth between the mirrors, tracing its way through the groups of atoms with every shot. The ricocheting light entangles them.

The sensing: A microwave ripples through the two groups of atoms. The atoms that happen to resonate with the microwave’s particular frequency respond by changing to a different state, like the wine glass that vibrates when a soprano hits just the right note.

Similarly, when a particular acceleration is applied to the atomic groups, some fraction of the atoms in each group responds by changing state.

The measurement: The two entangled atomic groups behave like two faces of a single clock, or two readings of one accelerometer.

The research team measured the number of atoms that changed state — the ones that vibrated like a wine glass — in each group.

Then they used the numbers to calculate the difference in the microwave frequencies applied to the two groups, and therefore the difference in the groups’ readings of time or acceleration.

Increased precision: The Kasevich team found that entanglement improves the precision in the frequency or acceleration difference read by the displays.

In their setup, the measurement of time in two locations was 3.5 times more precise when the clocks were entangled than if they were operating independently. For acceleration, the measurement was 1.2 times more precise with entanglement.

Impact

If you want to know how long something takes, you might look at one clock as a starting point and then run to another room to look at another clock, the end point,” Kasevich said. ​Our method exploits the entanglement principle to make that comparison as precise as possible.”

The researchers also successfully networked four groups of atoms in four separate locations using this configuration.

In the team’s experiment, the two groups of atoms were separated by about 20 micrometers, close to the average width of a human hair.

Their work means that time or acceleration can be compared, with unprecedented sensitivity, between four separate, albeit close-together, locations.

In the future, we want to push them out to longer distances. The world wants clocks whose time can be compared. It’s the same with accelerometers. There are sensing configurations where you want to be able to read out the difference in the acceleration of one group with respect to another. We were able to show how to do that,” Kasevich said.

“This is a tour de force result from Mark and his team,” said Q-NEXT Deputy Director JoAnne Hewett, who is also the SLAC National Accelerator Laboratory associate director of fundamental physics and chief research officer as well as a Stanford professor of particle physics and astrophysics. ​”This means we can harness entanglement to develop sensors that are far more powerful than those we use today. We are another step closer to wielding quantum phenomena to improve our everyday lives.”

This work was supported by the DOE’s Office of Science National Quantum Information Science Research Centers as part of the Q-NEXT center.

About Q-NEXT

Q-NEXT is a U.S. Department of Energy National Quantum Information Science Research Center led by Argonne National Laboratory. Q-NEXT brings together world-class researchers from national laboratories, universities and U.S. technology companies with the goal of developing the science and technology to control and distribute quantum information. Q-NEXT collaborators and institutions will create two national foundries for quantum materials and devices, develop networks of sensors and secure communications systems, establish simulation and network test beds, and train the next-generation quantum-ready workforce to ensure continued U.S. scientific and economic leadership in this rapidly advancing field.

About Argonne

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.


Source: Leah Hesla, Argonne Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire