Three RSC Supercomputers Represent Russia in Global IO500 Rating

November 19, 2020

Nov. 19, 2020 — Three supercomputer systems deployed by RSC, a leading Russian developer and integrator of innovative ultrahigh-dense and energy efficient solutions for high-performance computing (HPC), data centers, cloud platforms and storage-on-demand, are the only Russian systems in the new edition of global IO500 rating of the best performing HPC-level storage systems (as it was announced at SC20, the world’s largest supercomputer exhibition).

MVS-10P OP2 supercomputer (Joint Supercomputer Center of the Russian Academy of Sciences, JSCC RAS) is a new member of the list entered on 18th place, which is the best result among all Russian systems there. Govorun supercomputer holds 22nd position (Joint Institute for Nuclear Research, JINR in Dubna, Moscow region), and ‘Polytechnic – RSC Tornado’ system has got 28th place (St. Petersburg State Polytechnic University, SPbPU). Previous IO500 rating featured two RSC supercomputers, so now the company has increased by 50% the number of its systems. Since June 2018, the RSC’s presence in the list tripled.

These excellent results were achieved due to unique distributed and composable RSC Storage on-Demand systems. It is based on Intel SSD and Intel Optane SSD with NVMe interfaces in all three projects. JSCC RAS supercomputer also takes advantage of new storage nodes based on high-speed Intel SSD drives in E1.S form-factor (nicknamed ‘rulers’).

When Govorun supercomputer was commissioned and operational at JINR in June 2018, it occupied the high 9th place in the global IO500 rating.

JSCC RAS supercomputer

MVS-10P OP2 supercomputer at JSCC RAS

The Joint Supercomputer Center of the Russian Academy of Sciences is one of the powerful Russian supercomputing centers in the field of science and high education. Over 150 research groups use HPC resources of JSCC RAS for solving fundamental and applied tasks.

Total peak performance of JSCC RAS systems deployed by RSC based on ultrahigh-dense and energy efficient RSC Tornado and RSC PetaStream solutions with 100% ‘hot water’ liquid cooling is currently 1.7 Petaflops.

MVS-10P OP2 supercomputer at JSCC RAS had undergone another scheduled upgrade in 2020. Its peak performance has been increased by almost two times by 93% and is currently 823.91 Teraflops.

This computing power increase resulted from installation of a new segment of 86 computing nodes based on Intel Xeon Scalable 2nd Generation server processors (Intel Xeon Gold 6248R), Intel S2600BPB Server Board and Intel SSD. Intel Omni-Path interconnect technology enables high-speed link between computing nodes. MVS-10P OP2 supercomputer is also based on comprehensive ultrahigh-dense and energy efficient RSC Tornado solution with 100% ‘hot water’ liquid cooling.

Supercomputer named after N. N. Govorun in JINR

Govorun supercomputer of the Joint Institute for Nuclear Research is a joint project of the Theoretical Physics Laboratory (TPL) named after N.N. Bogolyubov and Laboratory of IT (LIT) supported by JINR board. It was deployed in 2018 with help of specialists from RSC Group and Intel Corporation.

The initial installation the Govorun supercomputer in 2018 enabled a lot of complex and resource-intensive simulations in the field of quantum chromodynamics patterns for research of hadronic matter properties at high energy density and barion charge and in presence of extra strong electromagnetic fields/ It also accelerated generation and reconstruction of events for planned experiments for coming NICA ion collider. Supercomputer boosted calculation speed of radiation safety of experimental JINR units; significantly accelerated radiation biology research and other applied science problems at JINR; supported in international collaborations. Research results were published in over 50 leading global science journals, including Nature Physics.

JINR supercomputer was upgraded in 2019. The new hyper-converged and software-defined system has total theoretical peak performance of 860 TFLOPS with double precision. It’s novel approach has unique features to make it adaptable for specific user workloads and maximize utilization of supercomputer’s resources.

The system has a number of different node types and allows unique flexibility of composable configurations:

  • Base computing nodes — dual-socket nodes with two high speed NVMe drives based on Intel Xeon Scalable 2nd Generation processors (Intel Xeon Gold 8268), Intel Server Board S2600BP and high-speed 2TB Intel SSD DC P4511 drives with NVMe interface in M.2 form-factor, as well as one 100Gbps Intel Omni-Path adapter. These nodes are the building blocks for standard computing and distributed storage-on-demand systems.
  • Enhanced storage functionality nodes — base dual-socket nodes with 12 extra M.2 slots for high-speed NVMe disks and high-speed PCIe bus controllers supporting all advantages of modern storage technologies such as SDS, NVMe-over-Fabric, M.2 Hot Swap, etc. Nodes are based on Intel Xeon Scalable 2nd Generation processors (Intel Xeon Gold 8268), Intel Server Board S2600BP, two 100Gbps Intel Omni-Path adapters and:
  • 12x high-speed Intel SSD DC P4511 2TB M.2 drives with NVMe interface for high-speed static and storage-on-demand systems;
  • or 12x high-speed low latency Intel SSD DC Optane P4801X 375GB M.2 drives with NVMe interface. These nodes can be used for high-capacity systems (up to 3.4TB per node) or as very fast parallel storage component (e.g. MDS in Lustre).
  • Nodes for hyper-massive parallel tasks based on 72-core Intel Xeon Phi 7290 coprocessors, Intel Server Board S7200AP, Intel SSD DC S3520 M.2 drives with SATA interface. Hyper-converged approach resulted in unique high-speed storage system for “Govorun” with leading characteristics and cost-efficiency.

An implementation of “storage-on-demand” approach in JINR supercomputer enables re-configuration of a specific storage system for each user or application with all required properties (capacity, speed, file system, persistence, reliability and security), which would also be impossible to achieve with standard, monolithic approach to HPC storage.

‘Polytechnic – RSC Tornado’ supercomputer at SPbPU

St. Petersburg Polytechnic State University named after Peter the Great started creating one of the most powerful and innovative supercomputer centers (SCC) in Russia with peak performance over 1.1 Petaflops back in 2014, and ‘Polytechnic’ SCC has been commissioned successfully in 2015.

SPbPU supercomputer center is focused on solving inter-disciplinary natural science research tasks and design of complex technical systems for hi-tech segments of local industries and science. The overall peak performance of SPbPU supercomputers has been increased by 23% in 2020 and currently amounts 1.6 Petaflops.

After scheduled upgrade of ‘Polytechnic – RSC Tornado’ supercomputer in 2020 its peak performance has increased by 29% to 1.309 Petaflops.

This computing power increase resulted from installation of a new segment of 64 computing nodes based on Intel Xeon Scalable 2nd Generation server processors (Intel Xeon Platinum 8268, Intel Xeon Gold 6248R), Intel Server Board S2600BPB, Intel SSD and Intel Optane SSD. ‘Polytechnic – RSC Tornado’ supercomputer is based on an universal ultrahigh-dense and energy efficient RSC Tornado solution with 100% ‘hot water’ liquid cooling.

About RSC Group

RSC Group is a leading Russian developer and integrator of full cycle innovative, ultra high-density, scalable, energy-efficient and hyper-converged solutions for high-performance computing (HPC), data centers and intelligent data storage on-demand based on Intel architecture, innovative RSC liquid cooling technology and a number of its own know-hows. Since 2018, RSC participates in ‘National Champions’ priority project implemented by the Ministry of Economic Development of Russian Federation.

RSC has the potential to create energy efficient solutions with record-breaking power usage effectiveness (PUE), the highest computing density in the industry with standard x86-based processors, to use fully green design, provide the highest solution reliability, noise-free operation of computing modules, 100% compatibility and guaranteed scalability with unmatched low cost of ownership and low power consumption. RSC specialists also have the experience of developing and implementing an integrated software stack of solutions to improve work efficiency and application of supercomputer systems from system software to vertically oriented platforms based on cloud computing technologies.

RSC is a Platinum member of Intel Technology Provider Program, has Intel Select Solution for Simulation and Modeling, Intel Select Solution for Professional Visualization certifications, participates in Intel Fabric Builders Program, has Intel HPC Data Center Specialist status and Intel Solutions for Lustre Reseller Elite status. Performance and scalability of RSC Tornado based solutions are proved by Intel Cluster Ready certification.
For more information see our corporate website www.rscgroup.ru.


Source: RSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support contracts directly from Nvidia for the certified systems ar Read more…

By John Russell

XSEDE Supercomputers Square Off Against Ebola

January 26, 2021

COVID-19 may have dominated headlines and occupied much of the world’s scientific computing capacity over the last year, but many researchers continued their work to keep other deadly viruses at bay. One of those, Ebol Read more…

By Oliver Peckham

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support Read more…

By John Russell

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This