Topology, Physics & Machine Learning Take on Climate Research Data Challenges

September 7, 2018

Sept. 7, 2018 — Two PhD students who first came to Lawrence Berkeley National Laboratory (Berkeley Lab) as summer interns in 2016 are spending six months a year at the lab through 2020 developing new data analytics tools that could dramatically impact climate research and other large-scale science data projects.

Grzegorz Muszynski is a PhD student at the University of Liverpool, U.K. studying with Vitaliy Kurlin, an expert in topology and computational geometry. Adam Rupe is pursuing his PhD at the University of California at Davis under the supervision of Jim Crutchfield, an expert in dynamical systems, chaos, information theory and statistical mechanics. Both are also currently working in the National Energy Research Scientific Computing Center’s (NERSC) Data & Analytics Services (DAS) group, and their PhDs are being funded by the Big Data Center (BDC), a collaboration between NERSC, Intel and five Intel Parallel Computing Centers launched in 2017 to enable capability data-intensive applications on NERSC’s supercomputing platforms.

During their first summer at the lab, Muszynski and Rupe so impressed their mentors that they were invited to stay on another six months, said Karthik Kashinath, a computer scientist and engineer in the DAS group who leads multiple BDC climate science projects. Their research also fits nicely with the goals of the BDC, which was just getting off the ground when they first came on board. Muszynski and Rupe are now in the first year of their respective three-year BDC-supported projects, splitting time between their PhD studies and their research at the lab.

A Grand Challenge in Climate Science

From the get-go their projects have been focused on addressing a grand challenge in climate science: finding more effective ways to detect and characterize extreme weather events in the global climate system across multiple geographical regions and developing more efficient methods for analyzing the ever-increasing amount of simulated and observational data. Automated pattern recognition is at the heart of both efforts, yet the two researchers are approaching the problem in distinctly different ways: Muszynski is using various combinations of topology, applied math and machine learning to detect, classify and characterize weather and climate patterns, while Rupe has developed a physics-based mathematical model that enables unsupervised discovery of coherent structures characteristic of the spatiotemporal patterns found in the climate system.

“When you are investigating extreme weather and climate events and how they are changing in a warming world, one of the challenges is being able to detect, identify and characterize these events in large data sets,” Kashinath said. “Historically we have not been very good at pulling out these events from very large data sets. There isn’t a systematic way to do it, and there is no consensus on what the right approaches are.”

This is why the DAS group and the BDC are so enthusiastic about the work Muszynski and Rupe are doing. In their time so far at the lab, both students have been extremely productive in terms of research progress, publications, presentations and community outreach, Kashinath noted. Together, their work has resulted in six articles, eight poster presentations and nine conference talks over the last two years, which has fueled interest within the climate science community—and for good reason, he emphasized. In particular, Muszynski’s work was noted as novel and powerful at the Atmospheric Rivers Tracking Method Intercomparison Project (ARTMIP), an international community of researchers investigating Atmospheric Rivers.

“The volume at which climate data is being produced today is just insane,” he said. “It’s been going up at an exponential pace ever since climate models came out, and these models have only gotten more complex and more sophisticated with much higher resolution in space and time. So there is a strong need to automate the process of discovering structures in data.”

There is also a desire to find climate data analysis methods that are reliable across different models, climates and variables. “We need automatic techniques that can mine through large amounts of data and that works in a unified manner so it can be deployed across different data sets from different research groups,” Kashinath said.

Using Geometry to Reveal Topology

Muszynski and Rupe are both making steady progress toward meeting these challenges. Over his two years at the lab so far, Muszynski has developed a framework of tools from applied topology and machine learning that are complementary to existing tools and methods used by climate scientists and can be mixed and matched depending on the problem to be solved. As part of this work, Kashinath noted, Muszynski parallelized his codebase on several nodes on NERSC’s Cori supercomputer to accelerate the machine learning training process, which often requires hundreds to thousands of examples to train a model that can classify events accurately.

His topological methods also benefited from the guidance of Dmitriy Morozov, a computational topologist and geometer at CRD. In a paper submitted earlier this year to the journal Geoscientific Model Development, Muszynski and his co-authors used topological data analysis and machine learning to recognize atmospheric rivers in climate data, demonstrating that this automated method is “reliable, robust and performs well” when tested on a range of spatial and temporal resolutions of CAM5.1 climate model output. They also tested the method on MERRA-2, a climate reanalysis product that incorporates observational data that makes pattern detection even more difficult. In addition, they noted, the method is “threshold-free”, a key advantage over existing data analysis methods used in climate research.

“Most existing methods use empirical approaches where they set arbitrary thresholds on different physical variables, such as temperature and wind speed,” Kashinath explained. “But these thresholds are highly dependent on the climate we are living in right now and cannot be applied to different climate scenarios. Furthermore, these thresholds often depend on the type of dataset and spatial resolution. With Grzegorz’s method, because it is looking for underlying shapes (geometry and topology) of these events in the data, they are inherently free of the threshold problem and can be seamlessly applied across different datasets and climate scenarios. We can also study how these shapes are changing over time that will be very useful to understand how these events are changing with global warming.”

While topology has been applied to simpler, smaller scientific problems, this is one of the first attempts to apply topological data analysis to large climate data sets. “We are using topological data analysis to reveal topological properties of structures in the data and machine learning to classify these different structures in large climate datasets,” Muszynski said.

The results so far have been impressive, with notable reductions in computational costs and data extraction times. “I only need a few minutes to extract topological features and classify events using a machine learningclassifier, compared to days or weeks needed to train a deep learning model for the same task,” he said. “This method is orders of magnitude faster than traditional methods or deep learning. If you were using vanilla deep learning on this problem, it would take 100 times the computational time.”

Another key advantage of Muszynski’s framework is that “it doesn’t really care where you are on the globe,” Kashinath said. “You can apply it to atmospheric rivers in North America, South America, Europe – it is universal and can be applied across different domains, models and resolutions. And this idea of going after the underlying shapes of events in large datasets with a method that could be used for various classes of climate and weather phenomena and being able to work across multiple datasets—that becomes a very powerful tool.”

To read the full article, click here.


Source: Kathy Kincade, NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the University of Chicago, leads Chameleon. This innovative projec Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire