Topology, Physics & Machine Learning Take on Climate Research Data Challenges

September 7, 2018

Sept. 7, 2018 — Two PhD students who first came to Lawrence Berkeley National Laboratory (Berkeley Lab) as summer interns in 2016 are spending six months a year at the lab through 2020 developing new data analytics tools that could dramatically impact climate research and other large-scale science data projects.

Grzegorz Muszynski is a PhD student at the University of Liverpool, U.K. studying with Vitaliy Kurlin, an expert in topology and computational geometry. Adam Rupe is pursuing his PhD at the University of California at Davis under the supervision of Jim Crutchfield, an expert in dynamical systems, chaos, information theory and statistical mechanics. Both are also currently working in the National Energy Research Scientific Computing Center’s (NERSC) Data & Analytics Services (DAS) group, and their PhDs are being funded by the Big Data Center (BDC), a collaboration between NERSC, Intel and five Intel Parallel Computing Centers launched in 2017 to enable capability data-intensive applications on NERSC’s supercomputing platforms.

During their first summer at the lab, Muszynski and Rupe so impressed their mentors that they were invited to stay on another six months, said Karthik Kashinath, a computer scientist and engineer in the DAS group who leads multiple BDC climate science projects. Their research also fits nicely with the goals of the BDC, which was just getting off the ground when they first came on board. Muszynski and Rupe are now in the first year of their respective three-year BDC-supported projects, splitting time between their PhD studies and their research at the lab.

A Grand Challenge in Climate Science

From the get-go their projects have been focused on addressing a grand challenge in climate science: finding more effective ways to detect and characterize extreme weather events in the global climate system across multiple geographical regions and developing more efficient methods for analyzing the ever-increasing amount of simulated and observational data. Automated pattern recognition is at the heart of both efforts, yet the two researchers are approaching the problem in distinctly different ways: Muszynski is using various combinations of topology, applied math and machine learning to detect, classify and characterize weather and climate patterns, while Rupe has developed a physics-based mathematical model that enables unsupervised discovery of coherent structures characteristic of the spatiotemporal patterns found in the climate system.

“When you are investigating extreme weather and climate events and how they are changing in a warming world, one of the challenges is being able to detect, identify and characterize these events in large data sets,” Kashinath said. “Historically we have not been very good at pulling out these events from very large data sets. There isn’t a systematic way to do it, and there is no consensus on what the right approaches are.”

This is why the DAS group and the BDC are so enthusiastic about the work Muszynski and Rupe are doing. In their time so far at the lab, both students have been extremely productive in terms of research progress, publications, presentations and community outreach, Kashinath noted. Together, their work has resulted in six articles, eight poster presentations and nine conference talks over the last two years, which has fueled interest within the climate science community—and for good reason, he emphasized. In particular, Muszynski’s work was noted as novel and powerful at the Atmospheric Rivers Tracking Method Intercomparison Project (ARTMIP), an international community of researchers investigating Atmospheric Rivers.

“The volume at which climate data is being produced today is just insane,” he said. “It’s been going up at an exponential pace ever since climate models came out, and these models have only gotten more complex and more sophisticated with much higher resolution in space and time. So there is a strong need to automate the process of discovering structures in data.”

There is also a desire to find climate data analysis methods that are reliable across different models, climates and variables. “We need automatic techniques that can mine through large amounts of data and that works in a unified manner so it can be deployed across different data sets from different research groups,” Kashinath said.

Using Geometry to Reveal Topology

Muszynski and Rupe are both making steady progress toward meeting these challenges. Over his two years at the lab so far, Muszynski has developed a framework of tools from applied topology and machine learning that are complementary to existing tools and methods used by climate scientists and can be mixed and matched depending on the problem to be solved. As part of this work, Kashinath noted, Muszynski parallelized his codebase on several nodes on NERSC’s Cori supercomputer to accelerate the machine learning training process, which often requires hundreds to thousands of examples to train a model that can classify events accurately.

His topological methods also benefited from the guidance of Dmitriy Morozov, a computational topologist and geometer at CRD. In a paper submitted earlier this year to the journal Geoscientific Model Development, Muszynski and his co-authors used topological data analysis and machine learning to recognize atmospheric rivers in climate data, demonstrating that this automated method is “reliable, robust and performs well” when tested on a range of spatial and temporal resolutions of CAM5.1 climate model output. They also tested the method on MERRA-2, a climate reanalysis product that incorporates observational data that makes pattern detection even more difficult. In addition, they noted, the method is “threshold-free”, a key advantage over existing data analysis methods used in climate research.

“Most existing methods use empirical approaches where they set arbitrary thresholds on different physical variables, such as temperature and wind speed,” Kashinath explained. “But these thresholds are highly dependent on the climate we are living in right now and cannot be applied to different climate scenarios. Furthermore, these thresholds often depend on the type of dataset and spatial resolution. With Grzegorz’s method, because it is looking for underlying shapes (geometry and topology) of these events in the data, they are inherently free of the threshold problem and can be seamlessly applied across different datasets and climate scenarios. We can also study how these shapes are changing over time that will be very useful to understand how these events are changing with global warming.”

While topology has been applied to simpler, smaller scientific problems, this is one of the first attempts to apply topological data analysis to large climate data sets. “We are using topological data analysis to reveal topological properties of structures in the data and machine learning to classify these different structures in large climate datasets,” Muszynski said.

The results so far have been impressive, with notable reductions in computational costs and data extraction times. “I only need a few minutes to extract topological features and classify events using a machine learningclassifier, compared to days or weeks needed to train a deep learning model for the same task,” he said. “This method is orders of magnitude faster than traditional methods or deep learning. If you were using vanilla deep learning on this problem, it would take 100 times the computational time.”

Another key advantage of Muszynski’s framework is that “it doesn’t really care where you are on the globe,” Kashinath said. “You can apply it to atmospheric rivers in North America, South America, Europe – it is universal and can be applied across different domains, models and resolutions. And this idea of going after the underlying shapes of events in large datasets with a method that could be used for various classes of climate and weather phenomena and being able to work across multiple datasets—that becomes a very powerful tool.”

To read the full article, click here.


Source: Kathy Kincade, NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

SC 30th Anniversary Perennials 1988-2018

November 8, 2018

Many conferences try, fewer succeed. Thirty years ago, no one knew if the first SC would also be the last. Thirty years later, we know it’s the biggest annual Read more…

By Doug Black & Tiffany Trader

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This