Topology, Physics & Machine Learning Take on Climate Research Data Challenges

September 7, 2018

Sept. 7, 2018 — Two PhD students who first came to Lawrence Berkeley National Laboratory (Berkeley Lab) as summer interns in 2016 are spending six months a year at the lab through 2020 developing new data analytics tools that could dramatically impact climate research and other large-scale science data projects.

Grzegorz Muszynski is a PhD student at the University of Liverpool, U.K. studying with Vitaliy Kurlin, an expert in topology and computational geometry. Adam Rupe is pursuing his PhD at the University of California at Davis under the supervision of Jim Crutchfield, an expert in dynamical systems, chaos, information theory and statistical mechanics. Both are also currently working in the National Energy Research Scientific Computing Center’s (NERSC) Data & Analytics Services (DAS) group, and their PhDs are being funded by the Big Data Center (BDC), a collaboration between NERSC, Intel and five Intel Parallel Computing Centers launched in 2017 to enable capability data-intensive applications on NERSC’s supercomputing platforms.

During their first summer at the lab, Muszynski and Rupe so impressed their mentors that they were invited to stay on another six months, said Karthik Kashinath, a computer scientist and engineer in the DAS group who leads multiple BDC climate science projects. Their research also fits nicely with the goals of the BDC, which was just getting off the ground when they first came on board. Muszynski and Rupe are now in the first year of their respective three-year BDC-supported projects, splitting time between their PhD studies and their research at the lab.

A Grand Challenge in Climate Science

From the get-go their projects have been focused on addressing a grand challenge in climate science: finding more effective ways to detect and characterize extreme weather events in the global climate system across multiple geographical regions and developing more efficient methods for analyzing the ever-increasing amount of simulated and observational data. Automated pattern recognition is at the heart of both efforts, yet the two researchers are approaching the problem in distinctly different ways: Muszynski is using various combinations of topology, applied math and machine learning to detect, classify and characterize weather and climate patterns, while Rupe has developed a physics-based mathematical model that enables unsupervised discovery of coherent structures characteristic of the spatiotemporal patterns found in the climate system.

“When you are investigating extreme weather and climate events and how they are changing in a warming world, one of the challenges is being able to detect, identify and characterize these events in large data sets,” Kashinath said. “Historically we have not been very good at pulling out these events from very large data sets. There isn’t a systematic way to do it, and there is no consensus on what the right approaches are.”

This is why the DAS group and the BDC are so enthusiastic about the work Muszynski and Rupe are doing. In their time so far at the lab, both students have been extremely productive in terms of research progress, publications, presentations and community outreach, Kashinath noted. Together, their work has resulted in six articles, eight poster presentations and nine conference talks over the last two years, which has fueled interest within the climate science community—and for good reason, he emphasized. In particular, Muszynski’s work was noted as novel and powerful at the Atmospheric Rivers Tracking Method Intercomparison Project (ARTMIP), an international community of researchers investigating Atmospheric Rivers.

“The volume at which climate data is being produced today is just insane,” he said. “It’s been going up at an exponential pace ever since climate models came out, and these models have only gotten more complex and more sophisticated with much higher resolution in space and time. So there is a strong need to automate the process of discovering structures in data.”

There is also a desire to find climate data analysis methods that are reliable across different models, climates and variables. “We need automatic techniques that can mine through large amounts of data and that works in a unified manner so it can be deployed across different data sets from different research groups,” Kashinath said.

Using Geometry to Reveal Topology

Muszynski and Rupe are both making steady progress toward meeting these challenges. Over his two years at the lab so far, Muszynski has developed a framework of tools from applied topology and machine learning that are complementary to existing tools and methods used by climate scientists and can be mixed and matched depending on the problem to be solved. As part of this work, Kashinath noted, Muszynski parallelized his codebase on several nodes on NERSC’s Cori supercomputer to accelerate the machine learning training process, which often requires hundreds to thousands of examples to train a model that can classify events accurately.

His topological methods also benefited from the guidance of Dmitriy Morozov, a computational topologist and geometer at CRD. In a paper submitted earlier this year to the journal Geoscientific Model Development, Muszynski and his co-authors used topological data analysis and machine learning to recognize atmospheric rivers in climate data, demonstrating that this automated method is “reliable, robust and performs well” when tested on a range of spatial and temporal resolutions of CAM5.1 climate model output. They also tested the method on MERRA-2, a climate reanalysis product that incorporates observational data that makes pattern detection even more difficult. In addition, they noted, the method is “threshold-free”, a key advantage over existing data analysis methods used in climate research.

“Most existing methods use empirical approaches where they set arbitrary thresholds on different physical variables, such as temperature and wind speed,” Kashinath explained. “But these thresholds are highly dependent on the climate we are living in right now and cannot be applied to different climate scenarios. Furthermore, these thresholds often depend on the type of dataset and spatial resolution. With Grzegorz’s method, because it is looking for underlying shapes (geometry and topology) of these events in the data, they are inherently free of the threshold problem and can be seamlessly applied across different datasets and climate scenarios. We can also study how these shapes are changing over time that will be very useful to understand how these events are changing with global warming.”

While topology has been applied to simpler, smaller scientific problems, this is one of the first attempts to apply topological data analysis to large climate data sets. “We are using topological data analysis to reveal topological properties of structures in the data and machine learning to classify these different structures in large climate datasets,” Muszynski said.

The results so far have been impressive, with notable reductions in computational costs and data extraction times. “I only need a few minutes to extract topological features and classify events using a machine learningclassifier, compared to days or weeks needed to train a deep learning model for the same task,” he said. “This method is orders of magnitude faster than traditional methods or deep learning. If you were using vanilla deep learning on this problem, it would take 100 times the computational time.”

Another key advantage of Muszynski’s framework is that “it doesn’t really care where you are on the globe,” Kashinath said. “You can apply it to atmospheric rivers in North America, South America, Europe – it is universal and can be applied across different domains, models and resolutions. And this idea of going after the underlying shapes of events in large datasets with a method that could be used for various classes of climate and weather phenomena and being able to work across multiple datasets—that becomes a very powerful tool.”

To read the full article, click here.


Source: Kathy Kincade, NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire