Topology, Physics & Machine Learning Take on Climate Research Data Challenges

September 7, 2018

Sept. 7, 2018 — Two PhD students who first came to Lawrence Berkeley National Laboratory (Berkeley Lab) as summer interns in 2016 are spending six months a year at the lab through 2020 developing new data analytics tools that could dramatically impact climate research and other large-scale science data projects.

Grzegorz Muszynski is a PhD student at the University of Liverpool, U.K. studying with Vitaliy Kurlin, an expert in topology and computational geometry. Adam Rupe is pursuing his PhD at the University of California at Davis under the supervision of Jim Crutchfield, an expert in dynamical systems, chaos, information theory and statistical mechanics. Both are also currently working in the National Energy Research Scientific Computing Center’s (NERSC) Data & Analytics Services (DAS) group, and their PhDs are being funded by the Big Data Center (BDC), a collaboration between NERSC, Intel and five Intel Parallel Computing Centers launched in 2017 to enable capability data-intensive applications on NERSC’s supercomputing platforms.

During their first summer at the lab, Muszynski and Rupe so impressed their mentors that they were invited to stay on another six months, said Karthik Kashinath, a computer scientist and engineer in the DAS group who leads multiple BDC climate science projects. Their research also fits nicely with the goals of the BDC, which was just getting off the ground when they first came on board. Muszynski and Rupe are now in the first year of their respective three-year BDC-supported projects, splitting time between their PhD studies and their research at the lab.

A Grand Challenge in Climate Science

From the get-go their projects have been focused on addressing a grand challenge in climate science: finding more effective ways to detect and characterize extreme weather events in the global climate system across multiple geographical regions and developing more efficient methods for analyzing the ever-increasing amount of simulated and observational data. Automated pattern recognition is at the heart of both efforts, yet the two researchers are approaching the problem in distinctly different ways: Muszynski is using various combinations of topology, applied math and machine learning to detect, classify and characterize weather and climate patterns, while Rupe has developed a physics-based mathematical model that enables unsupervised discovery of coherent structures characteristic of the spatiotemporal patterns found in the climate system.

“When you are investigating extreme weather and climate events and how they are changing in a warming world, one of the challenges is being able to detect, identify and characterize these events in large data sets,” Kashinath said. “Historically we have not been very good at pulling out these events from very large data sets. There isn’t a systematic way to do it, and there is no consensus on what the right approaches are.”

This is why the DAS group and the BDC are so enthusiastic about the work Muszynski and Rupe are doing. In their time so far at the lab, both students have been extremely productive in terms of research progress, publications, presentations and community outreach, Kashinath noted. Together, their work has resulted in six articles, eight poster presentations and nine conference talks over the last two years, which has fueled interest within the climate science community—and for good reason, he emphasized. In particular, Muszynski’s work was noted as novel and powerful at the Atmospheric Rivers Tracking Method Intercomparison Project (ARTMIP), an international community of researchers investigating Atmospheric Rivers.

“The volume at which climate data is being produced today is just insane,” he said. “It’s been going up at an exponential pace ever since climate models came out, and these models have only gotten more complex and more sophisticated with much higher resolution in space and time. So there is a strong need to automate the process of discovering structures in data.”

There is also a desire to find climate data analysis methods that are reliable across different models, climates and variables. “We need automatic techniques that can mine through large amounts of data and that works in a unified manner so it can be deployed across different data sets from different research groups,” Kashinath said.

Using Geometry to Reveal Topology

Muszynski and Rupe are both making steady progress toward meeting these challenges. Over his two years at the lab so far, Muszynski has developed a framework of tools from applied topology and machine learning that are complementary to existing tools and methods used by climate scientists and can be mixed and matched depending on the problem to be solved. As part of this work, Kashinath noted, Muszynski parallelized his codebase on several nodes on NERSC’s Cori supercomputer to accelerate the machine learning training process, which often requires hundreds to thousands of examples to train a model that can classify events accurately.

His topological methods also benefited from the guidance of Dmitriy Morozov, a computational topologist and geometer at CRD. In a paper submitted earlier this year to the journal Geoscientific Model Development, Muszynski and his co-authors used topological data analysis and machine learning to recognize atmospheric rivers in climate data, demonstrating that this automated method is “reliable, robust and performs well” when tested on a range of spatial and temporal resolutions of CAM5.1 climate model output. They also tested the method on MERRA-2, a climate reanalysis product that incorporates observational data that makes pattern detection even more difficult. In addition, they noted, the method is “threshold-free”, a key advantage over existing data analysis methods used in climate research.

“Most existing methods use empirical approaches where they set arbitrary thresholds on different physical variables, such as temperature and wind speed,” Kashinath explained. “But these thresholds are highly dependent on the climate we are living in right now and cannot be applied to different climate scenarios. Furthermore, these thresholds often depend on the type of dataset and spatial resolution. With Grzegorz’s method, because it is looking for underlying shapes (geometry and topology) of these events in the data, they are inherently free of the threshold problem and can be seamlessly applied across different datasets and climate scenarios. We can also study how these shapes are changing over time that will be very useful to understand how these events are changing with global warming.”

While topology has been applied to simpler, smaller scientific problems, this is one of the first attempts to apply topological data analysis to large climate data sets. “We are using topological data analysis to reveal topological properties of structures in the data and machine learning to classify these different structures in large climate datasets,” Muszynski said.

The results so far have been impressive, with notable reductions in computational costs and data extraction times. “I only need a few minutes to extract topological features and classify events using a machine learningclassifier, compared to days or weeks needed to train a deep learning model for the same task,” he said. “This method is orders of magnitude faster than traditional methods or deep learning. If you were using vanilla deep learning on this problem, it would take 100 times the computational time.”

Another key advantage of Muszynski’s framework is that “it doesn’t really care where you are on the globe,” Kashinath said. “You can apply it to atmospheric rivers in North America, South America, Europe – it is universal and can be applied across different domains, models and resolutions. And this idea of going after the underlying shapes of events in large datasets with a method that could be used for various classes of climate and weather phenomena and being able to work across multiple datasets—that becomes a very powerful tool.”

To read the full article, click here.


Source: Kathy Kincade, NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contain Read more…

By John Russell

Intel at CES: Nervana; 10nm Server CPU; Cascade Lake

January 9, 2019

On the eve of the Consumer Electronics Show in Las Vegas this week, Intel staged a launch event that covered a new version of its Nervana AI processor and a demonstration of the next-generation Xeon 10nm chip. The Read more…

By Staff

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Data: The Key To Unlocking Modern Research

Research tackles the big questions, delving into uncharted territory in pursuit of knowledge that could change the world. Today’s research simulations are generating more data than ever before, a trend that shows no signs of slowing. Read more…

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.” This maxim Read more…

By Ben Criger

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Batswana Gems

December 20, 2018

Most who work in the high-performance computing (HPC) industry agree; people problems are far more complicated than technical challenges. As I wrote in a 2015 HPCwire feature titled, “Women in HPC: Revelations and Reckoning,” diversity, or the lack thereof, is the HPC industry’s current grand challenge. Read more…

By Elizabeth Leake

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This