Two Brookhaven Lab Physicists Named APS Fellows

October 19, 2021

UPTON, N.Y., Oct. 19, 2021 — The American Physical Society (APS) has elected two scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory as 2021 APS fellows. With more than 45,000 members from academia, government, and industry, APS seeks to advance and share physics knowledge through research journals, scientific meetings, and activities in education, outreach, and advocacy. Each year, a very small percentage of APS members are elevated to the status of fellow through a nomination and selection process. Fellows are recognized for their exceptional contributions to physics,

Kétévi Adiklè Assamagan and Swagato Mukherjee

including in research, applications, leadership and service, and education.

Kétévi Adiklè Assamagan

Brookhaven Lab particle physics experimentalist Kétévi Adiklè Assamagan is being honored “for significant contributions to experimental studies of the Standard Model Higgs boson and the search for new phenomena beyond the Standard Model using the Higgs boson as a tool, and for leading physics outreach in Africa including founding the African School of Fundamental Physics and Applications.”

As member of the ATLAS Collaboration of the Large Hadron Collider (LHC)—the world’s largest particle collider, located at the European Center for Nuclear Research (CERN)—Assamagan was on the front lines leading up to the 2012 discovery of the Higgs boson. He led a group that prepared the framework for ATLAS computing software and methodology used to analyze LHC collision data.

The Higgs discovery filled in the last predicted particle of physicists’ Standard Model of particle physics, validating the case for how the Higgs boson helps to generate the masses of all fundamental particles. But even complete, the Standard Model leaves many questions still to be explored—including the nature of dark matter, the matter/antimatter imbalance in the universe, and the role of gravity in the subatomic world. Assamagan has been scouring LHC data for clues. He is interested in discovering how the fundamental interactions between matter and forces make the universe what it is now—and what “new physics” may lie beyond our current Standard Model understanding using the recently discovered Higgs boson as a tool.

Assamagan has also been a champion for bringing young people from Africa into the field of fundamental physics. In 2010, with support from Brookhaven, CERN, and a host of other U.S. and international research institutions, he helped to establish the African School of Fundamental Physics and Applications. The outreach program is held every two years in a different African nation, serving ~70 graduate level students out of hundreds of applicants. It also provides programs for local high school students and teachers and facilitates interactions with industry and government representatives as well. Participants learn about nuclear and particle physics theory; the computational tools used for experiments, data analysis, and simulations; the latest experimental programs, including detector designs and construction; as well as the application of fundamental physics knowledge and technology in fields such as medicine, clean energy, and nanotechnology. Since 2019, the DOE Office of High Energy Physics has provided direct funding to Brookhaven Lab in support of the School and the associated activities.

“I feel honored and humbled to be named an APS Fellow,” Assamagan said. “I appreciate the support that I have received from Brookhaven Lab in my professional growth. This recognition will serve to further develop physics education and outreach towards Africa, and it will encourage research collaborations with African physicists.”

Assamagan was born in Gabon, Central Africa, and grew up in Togo, West Africa. He attended the University of Lomé (formerly Université du Bénin) and continued his education at Indiana’s Ball State University and the University of Virginia, where he earned a Ph.D. in nuclear and particle physics in 1995. He held appointments and other positions at CERN, the Saclay Nuclear Research Centre in France, the University of Johannesburg in South Africa, Hampton University, and Thomas Jefferson National Accelerator Facility before joining Brookhaven’s Physics Department in 2001. Assamagan is a member of Brookhaven Lab’s African American Affinity Group. In 2019, he was elected Fellow of the African Academy of Sciences, and earlier this year, Fellow of the South African Institute of Physics.

Swagato Mukherjee

Brookhaven Lab nuclear physics theorist Swagato Mukherjee is being recognized “for seminal work employing ab initio lattice quantum chromodynamics (QCD) to uncover fundamental information on the QCD phase diagram at finite temperatures and baryon density, and for the creative use of these methods to provide limits on the location of the critical point in heavy-ion collisions.”

Mukherjee’s work explores the interactions of quarks and gluons, the fundamental building blocks that make up protons and neutrons of atomic nuclei. These interactions are governed by the strongest force in nature and described by a physics theory called quantum chromodynamics (QCD). The equations that make up QCD are extremely complex, involving billions of variables. To make such complex problems manageable, Mukherjee and his theorist colleagues use powerful supercomputers to represent the particles on a four-dimensional imaginary lattice—a stepwise grid made of three spatial dimensions plus time. The simulations explore all possible interactions of each particle with each of its adjacent neighbors, and how those interactions might ripple through the lattice over time.

The complex calculations allow physicists to model how the particle interactions change over different experimental conditions at the Relativistic Heavy Ion Collider (RHIC). RHIC, a DOE Office of Science user facility for nuclear physics research, collides the nuclei of heavy atoms such as gold to recreate the conditions of the early universe, before protons and neutrons existed. By feeding data from RHIC’s particle collisions into the models, Mukherjee can explore whether quarks and gluons are bound within protons or other composite particles, or free in their early-universe deconfined state, known as a quark-gluon plasma. He can also map out the transitions between these phases of matter—and help identify the conditions where physicists might find a so-called “critical point,” where the nature of transition between the two phases itself changes.

The complexity of the calculations grows as the questions scientists seek to answer require simulations of quark and gluon interactions on smaller and smaller scales, and under the fluctuating conditions expected near the QCD critical point. Mukherjee has been leading an effort to develop the next generation of computational tools to enable these calculations and push the field forward. Software and workflow management systems developed by his team are designed to exploit the diverse and continually evolving architectures of DOE’s Leadership Computing Facilities—some of the most powerful supercomputers and fastest data-sharing networks in the world. These tools will ultimately benefit nuclear research facilities across the DOE complex, and potentially other fields of science as well.

“I feel truly humbled to receive this recognition,” Mukherjee said. “This honor is only made possible by the privilege I have of working with outstanding scientific collaborators and the supportive research environment of Brookhaven Lab. I would especially like to thank the present and former members of the Lab’s Nuclear Theory group for creating a stimulating scientific environment and for providing unconditional professional support throughout my time at Brookhaven. I only hope to pass these kinds of opportunities forward to the next generations of scientists.”

Swagato Mukherjee was born and raised in India. He earned his B.S. and M.S., both in physics, from Calcutta University in 1999 and 2001, respectively. He went on to study theoretical physics at the Tata Institute of Fundamental Research in Mumbai, earning his Ph.D. in 2007. He joined Brookhaven Lab as a postdoctoral associate in 2009, was hired as an assistant physicist in 2010, and has been a physicist with tenure since 2016. He has been a principal investigator and co-author on a wide range of studies, organizer of conferences and workshops, and has given nearly 100 invited talks about his work. In addition, he serves on a range of committees to guide and review research, including the Executive Committee of the USQCD collaboration.

Brookhaven Lab’s research in nuclear and high-energy physics and operations at RHIC are all funded primarily through the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.


Source: Brookhaven National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire