University of Michigan and IBM Collaborate on Data-Centric HPC System

April 6, 2016

April 6 — The University of Michigan is collaborating with IBM (NYSE: IBM) to develop and deliver “data-centric” supercomputing systems designed to increase the pace of scientific discovery in fields as diverse as aircraft and rocket engine design, cardiovascular disease treatment, materials physics, climate modeling and cosmology.

The system is designed to enable high performance computing applications for physics to interact, in real time, with big data in order to improve scientists’ ability to make quantitative predictions. IBM’s systems use a GPU-accelerated, data-centric approach, integrating massive datasets seamlessly with high performance computing power, resulting in new predictive simulation techniques that promise to expand the limits of scientific knowledge.

The collaboration was announced today in San Jose at the second annual OpenPOWER Summit 2016. The OpenPOWER Foundation, which U-M recently joined, is an open, collaborative, technical community based on IBM’s POWER architecture. Several other Foundation members contributed to the development of this new high performance computing system, which has the potential to reduce computing costs by accelerating statistical inference and machine learning.

Working with IBM, U-M researchers have designed a computing resource called ConFlux to enable high performance computing clusters to communicate directly and at interactive speeds with data-intensive operations. Hosted at U-M, the project establishes a hardware and software ecosystem to enable large-scale data-driven modeling of complex physical problems, such as the performance of an aircraft engine, which consists of trillions of molecular interactions. ConFlux, funded by a grant from the National Science Foundation, aims to advance predictive modeling in several fields of computational science. IBM is providing servers and software solutions.

“There is a pressing need for data-driven predictive modeling to help re-envision traditional computing models in our pursuit to bring forth groundbreaking research,” said Karthik Duraisamy, assistant professor in the U-M Department of Aerospace Engineering and director of U-M’s Center for Data-driven Computational Physics. “The recent acceleration in computational power and measurement resolution has made possible the availability of extreme scale simulations and data sets. ConFlux allows us to bring together large scale scientific computing and machine learning for the first time to accomplish research that was previously impossible.”

ConFlux meshes well with IBM’s recent focus on data-centric computing systems.

“Scientific research is now at the crossroads of big data and high performance computing,” said Sumit Gupta, vice president, high performance computing and data analytics, IBM. “The explosion of data requires systems and infrastructures based on POWER8 plus accelerators that can both stream and manage the data and quickly synthesize and make sense of data to enable faster insights.”

U-M researchers understand the significance of IBM’s shift to data-centric systems, said Michael J. Henesey, vice president business development, data centric systems and innovation centers at IBM.

“They were enthusiastic about the application of this architecture to problems that are essential to the university and to the country,” Henesey said. “We will stay close to U-M to help inform our future system designs.”

Progress in a wide spectrum of fields ranging from medicine to transportation relies critically on the ability to gather, store, search and analyze big data and construct truly predictive models of complex, multi-scale systems.

Advanced technologies like data-centric computing systems are at the forefront of tackling these big data challenges and advancing the pace of innovation. By moving computing power to where the data resides, organizations of all sizes can maximize performance and minimize latency in their systems, enabling them to gain deeper insights from research. These data-centric solutions are accelerated through open innovation and IBM’s work with other members of the OpenPOWER Foundation.

The incorporation of OpenPOWER technologies into a modular integrated system will enable U-M to configure the systems for their specific needs. ConFlux incorporates IBM Power Systems LC servers, which were designed based on technologies and development efforts contributed by OpenPOWER Foundation members including Mellanox, NVIDIA and Tyan. It is also powered by the latest additions to the NVIDIA Tesla Accelerated Computing Platform: NVIDIA Tesla P100 GPU accelerators with the NVLink high-speed interconnect technology.

Additional data-centric solutions U-M is using include IBM Elastic Storage Server, IBM Spectrum Scale software (scale-out, parallel access network attached storage), and IBM Platform Computing software.

In an internal comparison test conducted by U-M, the POWER8 system significantly outperformed a competing architecture by providing low latency networks and a novel architecture that allows for the integrated use of central and graphics processing units.

As one of the first projects U-M will undertake with its advanced supercomputing system, researchers are working with NASA to use cognitive techniques to simulate turbulence around aircraft and rocket engines. They’re combining large amounts of data from wind tunnel experiments and simulations to build computing models that are used to predict the aerodynamics around new configurations of an aircraft wing or engine. With ConFlux, U-M can more accurately model and study turbulence, helping to speed development of more efficient airplane designs. It will also improve weather forecasting, climate science and other fields that involve the flow of liquids or gases.

U-M is also studying cardiovascular disease for the National Institutes of Health. By combining noninvasive imaging such as results from MRI and CT scans with a physical model of blood flow, U-M hopes to help doctors estimate artery stiffness within an hour of a scan, serving as an early predictor of diseases such as hypertension.

Studies are also planned to better understand climate science such as how clouds interact with atmospheric circulation, the origins of the universe and stellar evolution, and predictions of the behavior of biologically inspired materials.

“The ConFlux project aligns with U-M’s comprehensive strategy of investment in research computing and data science across disciplines,” said Eric Michielssen, U-M’s associate vice president for research computing. “For example, our $100 million Data Science Initiative is advancing faculty driven research in engineering and the social and health sciences by building connections between the worlds of Big Data and HPC. ConFlux epitomizes this forward-looking vision.”

For more information:

U-M’s Center for Data-Driven Computational Physics

IBM’s vision for data-centric systems

Source: IBM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

Student Clusterers Demolish HPCG Record! Nanyang Sweeps Benchmarks

November 16, 2017

Nanyang pulled off the always difficult double-play at this year’s SC Student Cluster Competition. The plucky team from Singapore posted a world record LINPACK, thus taking the Highest LINPACK Award, but also managed t Read more…

By Dan Olds

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s at SC17 in Denver. The previous record, established by German Read more…

By Dan Olds

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at SC17 played to a SRO crowd at a downtown Denver hotel. This w Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This