U.S. Industries to Benefit from Exascale Computing

October 18, 2017

Oct. 18, 2017 — Computer-aided design and engineering have come a long way since the first advanced CAD and CAE software programs appeared in the 1970s, and as manufacturing techniques, modeling and simulation have become increasingly complex over the years, computing power has had to keep up to meet the demand.

The need for exascale computing to handle the advanced physics and massive data sizes of today’s multimodal simulations is perhaps nowhere more apparent than in the product development industry. At Altair, a global software development and services company headquartered in Michigan with more than 2,600 employees and 68 offices worldwide, high-performance computing (HPC) is essential to providing the company and its clients with the tools to optimize product design. Altair is a member organization of the DOE’s Exascale Computing Project (ECP) Industry Council, an external advisory group of prominent US companies helping to define the industrial computing requirements for a future exascale ecosystem.

Exascale will impact a wide range of US industries.

Through its proprietary CAE software suite HyperWorks and its HPC workload management solution PBS Works, Altair relies on HPC to explore the vast design space afforded by advanced manufacturing processes, and to study the physics behind the designs to validate them. Increasingly, Altair’s 5,000-plus customers — in industries ranging from automotive and aerospace to heavy equipment and high-end electronics — need simulations that combine multiple physics-based solvers to predict performance, including structural optimization, electromagnetics, and computational fluid dynamics.

One example is the auto industry, which is designing cars to adhere to stricter carbon emissions guidelines. Meeting these standards requires manufacturing lightweight vehicles that are also strong enough to meet crash ratings, meaning engineers need to simultaneously model processes such as fluid-structural interaction, thermal interaction and crash dynamics. Typically, these multidisciplinary simulations take a long time and use a lot of computational power. To truly optimize these combined studies, and get the results back quickly, Altair and other industry leaders will need a higher level of computation than is available today, according to the company’s Chief Technical Officer Sam Mahalingam.

“The need for exascale really becomes extremely important because the size and complexity of the model increases as you do multiphysics simulations,” Mahalingam said. “This is a lot more complex model that allows you to truly understand what the interference and interactions are from one domain to another. In my opinion, exascale is truly going to contribute to capability computing in solving problems we have not solved before, and it’s going to make sure the products are a lot more optimized and introduced to the market a lot faster.”

Multiphysics simulations also generate tremendous amounts of data. When launching a product, manufacturers typically go through several iterations of simulations, creating file sizes too large to download to desktop computers. While Altair has a large infrastructure of high performance machines to store data for validation and support its cloud-based storage, the sheer amount of data stretches the limits of existing hardware. Exascale machines might be able to store the data where it is generated and enable engineers to visualize it remotely, Mahalingam said.

“The data you’re going to get cannot be visualized without exascale computing power and without parallelization,” he said.

While any product that is engineered or designed could benefit from exascale computing, Mahalingam said, it could be most transformational in industries where prototyping is difficult or impossible, such as aerospace or shipbuilding. Currently, companies in these industries must set up internal laboratories to test designs, which can be extremely cost-prohibitive. Exascale would allow for virtual labs that could completely simulate the physical experience, Mahalingam said, and instead of having to do individual studies sequentially, they could be done in parallel, saving time for engineers.

The benefits of exascale could even extend after a product launch, Mahalingam explained, when companies typically obtain real-world operational data and perform simulations to determine the remaining usable life of their products. If product developers could get the answer back in seconds instead of days, Mahalingam said, it could enhance preventative maintenance. “By superimposing the real-world operational data onto a digital model, we will be able to come back and predict where/when this part is going to fail depending on its design requirements.”

“Today we model everything first and then we basically validate that model. But can we turn it around?” Mahalingam said. “Based on the real-world operational data we’re collecting, can we truly come out with a data-driven model, a prescribed model, as a starting point that we can say will deliver a design a lot faster?”

Mahalingam said exascale will be “critical” to running the deep learning and machine learning algorithms necessary to create data-driven models that are much closer to a final, polished model. Also, it will allow engineers to shrink the design space instantly because it will incorporate historical data. The result, Mahalingam said, is that engineers will be freed up to think about more complex problems to solve, and in turn come up with more innovative products.

To stay competitive, Mahalingam said, product development companies will need to scale up solvers and make sure multiphysics simulations work on next-generation systems. In preparation, Altair is already looking at newer programming paradigms like CHARM++, PMIx, as well as middleware designed for exascale applications. The company is exploring scheduling that will cater to exascale and is keeping close watch on hardware announcements.

Logistically, the move to exascale isn’t without its challenges in hardware, applications and software, Mahalingam said. Hardware will be challenged in meeting higher performance standards while using less power. As computing moves beyond Moore’s Law, software will need to be highly parallelized, and the onus will fall on resource managers to perform dynamic scheduling and place computing jobs as fast as they can to make full use of exascale capability. Systems will also need to be more “fault-tolerant,” Mahalingam said, and less dependent on a single node.

More broadly, exascale computing will likely shift the paradigm away from capacity computing (brute force/trial and error) to cognitive computing, Mahalingam said. From a national perspective, he added, exascale could have widespread implications, not just in manufacturing, but also life sciences, personalized medicine and agriculture.

“It’s all about real time simulations, predicting what’s going to happen, and prescribing what needs to be done to make sure failures can be avoided or preempted,” Mahalingam said. “This is much bigger than any one company or any one industry. If you consider any industry, exascale is truly going to have a sizeable impact, and if a country like ours is going to be a leader in industrial design, engineering and manufacturing, we need exascale to keep the innovation edge.”


Source: Jeremy Thomas, Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Oracle Cloud Now Offers AMD Epyc Compute Instances

October 23, 2018

Even as a press report yesterday declared that Intel has abandoned its current effort to produce a 10nm chip – a report denied by Intel – looming rival AMD and Oracle today announced the availability of the first AMD Epyc processor-based instance on Oracle Cloud Infrastructure. Read more…

By Doug Black

Scripps, Nvidia Tackle AI Tools and Best Practices for Genomics and Health Sensors

October 23, 2018

Nvidia and the Scripps Research Translational Institute today announced a collaboration to develop AI and deep learning best practices, tools and infrastructure to accelerate AI applications using genomic and digital hea Read more…

By John Russell

Automated Optimization Boosts ResNet50 Performance by 1.77x

October 23, 2018

From supercomputers to cell phones, every system and software device in our digital panoply has a growing number of settings that, if not optimized, constrain performance, wasting precious cycles and watts. In the f Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Energy Matters: Evolving Holistic Approaches to Energy and Power Management in HPC

Energy costs of running clusters has always been a consideration when operating an infrastructure for high-performance computing (HPC).  As clusters become larger in the drive to the next levels of computing performance, energy efficiency has emerged as one of the foremost design goals.  Read more…

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about one of the great inspirational stories of these competitions. Read more…

By Dan Olds

Automated Optimization Boosts ResNet50 Performance by 1.77x

October 23, 2018

From supercomputers to cell phones, every system and software device in our digital panoply has a growing number of settings that, if not optimized, constrain  Read more…

By Tiffany Trader

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about o Read more…

By Dan Olds

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This