U.S. Industries to Benefit from Exascale Computing

October 18, 2017

Oct. 18, 2017 — Computer-aided design and engineering have come a long way since the first advanced CAD and CAE software programs appeared in the 1970s, and as manufacturing techniques, modeling and simulation have become increasingly complex over the years, computing power has had to keep up to meet the demand.

The need for exascale computing to handle the advanced physics and massive data sizes of today’s multimodal simulations is perhaps nowhere more apparent than in the product development industry. At Altair, a global software development and services company headquartered in Michigan with more than 2,600 employees and 68 offices worldwide, high-performance computing (HPC) is essential to providing the company and its clients with the tools to optimize product design. Altair is a member organization of the DOE’s Exascale Computing Project (ECP) Industry Council, an external advisory group of prominent US companies helping to define the industrial computing requirements for a future exascale ecosystem.

Exascale will impact a wide range of US industries.

Through its proprietary CAE software suite HyperWorks and its HPC workload management solution PBS Works, Altair relies on HPC to explore the vast design space afforded by advanced manufacturing processes, and to study the physics behind the designs to validate them. Increasingly, Altair’s 5,000-plus customers — in industries ranging from automotive and aerospace to heavy equipment and high-end electronics — need simulations that combine multiple physics-based solvers to predict performance, including structural optimization, electromagnetics, and computational fluid dynamics.

One example is the auto industry, which is designing cars to adhere to stricter carbon emissions guidelines. Meeting these standards requires manufacturing lightweight vehicles that are also strong enough to meet crash ratings, meaning engineers need to simultaneously model processes such as fluid-structural interaction, thermal interaction and crash dynamics. Typically, these multidisciplinary simulations take a long time and use a lot of computational power. To truly optimize these combined studies, and get the results back quickly, Altair and other industry leaders will need a higher level of computation than is available today, according to the company’s Chief Technical Officer Sam Mahalingam.

“The need for exascale really becomes extremely important because the size and complexity of the model increases as you do multiphysics simulations,” Mahalingam said. “This is a lot more complex model that allows you to truly understand what the interference and interactions are from one domain to another. In my opinion, exascale is truly going to contribute to capability computing in solving problems we have not solved before, and it’s going to make sure the products are a lot more optimized and introduced to the market a lot faster.”

Multiphysics simulations also generate tremendous amounts of data. When launching a product, manufacturers typically go through several iterations of simulations, creating file sizes too large to download to desktop computers. While Altair has a large infrastructure of high performance machines to store data for validation and support its cloud-based storage, the sheer amount of data stretches the limits of existing hardware. Exascale machines might be able to store the data where it is generated and enable engineers to visualize it remotely, Mahalingam said.

“The data you’re going to get cannot be visualized without exascale computing power and without parallelization,” he said.

While any product that is engineered or designed could benefit from exascale computing, Mahalingam said, it could be most transformational in industries where prototyping is difficult or impossible, such as aerospace or shipbuilding. Currently, companies in these industries must set up internal laboratories to test designs, which can be extremely cost-prohibitive. Exascale would allow for virtual labs that could completely simulate the physical experience, Mahalingam said, and instead of having to do individual studies sequentially, they could be done in parallel, saving time for engineers.

The benefits of exascale could even extend after a product launch, Mahalingam explained, when companies typically obtain real-world operational data and perform simulations to determine the remaining usable life of their products. If product developers could get the answer back in seconds instead of days, Mahalingam said, it could enhance preventative maintenance. “By superimposing the real-world operational data onto a digital model, we will be able to come back and predict where/when this part is going to fail depending on its design requirements.”

“Today we model everything first and then we basically validate that model. But can we turn it around?” Mahalingam said. “Based on the real-world operational data we’re collecting, can we truly come out with a data-driven model, a prescribed model, as a starting point that we can say will deliver a design a lot faster?”

Mahalingam said exascale will be “critical” to running the deep learning and machine learning algorithms necessary to create data-driven models that are much closer to a final, polished model. Also, it will allow engineers to shrink the design space instantly because it will incorporate historical data. The result, Mahalingam said, is that engineers will be freed up to think about more complex problems to solve, and in turn come up with more innovative products.

To stay competitive, Mahalingam said, product development companies will need to scale up solvers and make sure multiphysics simulations work on next-generation systems. In preparation, Altair is already looking at newer programming paradigms like CHARM++, PMIx, as well as middleware designed for exascale applications. The company is exploring scheduling that will cater to exascale and is keeping close watch on hardware announcements.

Logistically, the move to exascale isn’t without its challenges in hardware, applications and software, Mahalingam said. Hardware will be challenged in meeting higher performance standards while using less power. As computing moves beyond Moore’s Law, software will need to be highly parallelized, and the onus will fall on resource managers to perform dynamic scheduling and place computing jobs as fast as they can to make full use of exascale capability. Systems will also need to be more “fault-tolerant,” Mahalingam said, and less dependent on a single node.

More broadly, exascale computing will likely shift the paradigm away from capacity computing (brute force/trial and error) to cognitive computing, Mahalingam said. From a national perspective, he added, exascale could have widespread implications, not just in manufacturing, but also life sciences, personalized medicine and agriculture.

“It’s all about real time simulations, predicting what’s going to happen, and prescribing what needs to be done to make sure failures can be avoided or preempted,” Mahalingam said. “This is much bigger than any one company or any one industry. If you consider any industry, exascale is truly going to have a sizeable impact, and if a country like ours is going to be a leader in industrial design, engineering and manufacturing, we need exascale to keep the innovation edge.”


Source: Jeremy Thomas, Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This