UC San Diego Researchers Find Strong Performance, Complexities, and Puzzles in Intel’s Optane DIMMs

March 18, 2019

SAN DIEGO, Calif., March 18, 2019– University of California San Diego computer scientists have completed the first comprehensive evaluation of Intel’s new Intel Optane DC Persistent Memory Modules (Optane NVDIMMs).

From left: Computer science professors Steve Swanson, Jishen Zhao and postdoctoral researcher Joe Izraelevitz with Intel’s new memory modules.

They found that Optane DIMMs can make key storage applications 17 times faster, especially if system designers adapt their hardware and software to make the best use of the new technology.  They also found that the DIMMs can significantly expand main memory capacity without sacrificing much performance and that they exhibit complex performance characteristics that designers must accommodate to fully exploit them.

Optane DIMMs aim to extend the memory capacity of servers while also preserving data across power failures–enabling order-of-magnitude increases in performance compared to conventional hard drives and solid-state drives (SSDs).  The new memory (and similar technologies) have been in development for over a decade. The official release of the memory has been eagerly anticipated by researchers and potential customers like Google, Facebook, Amazon and other companies that require enormous memory capacity and storage performance.

UC San Diego’s Non-Volatile Systems Laboratory (NVSL), led by Steven Swanson and Jishen Zhao, both computer scientists at the Jacobs School of Engineering at UC San Diego, worked with Intel to get early access to two high-performance servers equipped with multiple Optane DIMMs.  Over the past several months, they, along with post-doctoral fellow Joe Izraelevitz, have put the Optane DIMMs through their paces and measured their basic performance characteristics and their overall impact on important software systems that power many of the cloud-based services that we all use every day.

“It’s been really exciting to finally have first-hand access to this memory.  For a long time, researchers (including my group) have made predictions about how this technology would perform.  We’ve proposed systems based on those predictions, and now we get to see how they really perform,” said Swanson.

A close up of the new Intel Optane DC Persistent Memory Modules

The researchers used two machines provided by Intel to evaluate the Optane DIMMs’ performance.  They measured basic performance numbers, including latency and bandwidth of reads and writes under a range of conditions.  They uncovered a range of exciting results.  “This memory is a new animal,” said Swanson, a professor in the UC San Diego Department of Computer Science and Engineering. “It is going to take a while for researchers, application developers, and system designers to understand its complexities and develop intuition about how it behaves.”

To understand how the underlying technology characteristics translate into application-level performance, researchers tested the memory on a wide range of applications used in cloud-based applications including MySQL, LMDB, RocksDB, MongoDB, Memcached, and Redis.  One particularly exciting result is that Optane DIMMs can speed up some applications by up to 128 times compared to flash-based SSDs, the current workhorse of data center storage.  Overall, the impact of the new memories varied between applications, and understanding the root cause of the differences will require more study.

“With a large variety of data-intensive applications — across big-data analytics, media processing, and computer vision domains — we also investigated the underlying software and hardware behaviors of computer systems with Optane DIMMs, traditional DRAMs, and DRAM-cached Optane DIMMs,” said  Zhao, who is an assistant professor in the computer science department at UC San Diego.

Swanson and his research group have been studying emerging memory technologies like the Optane DIMMs for over a decade.  The Non-Volatile Systems Laboratory developed some of the earliest software for managing and using such memories in 2011 and built a prototype SSD based on a precursor to the Optane memory chips in the same year.  More recently the NVSL has released a high-performance file system called NOVA built specifically for Optane DIMM-like memories. Zhao has worked on computer architecture support for non-volatile memory systems at UC Santa Cruz and HP Labs and joined the group earlier this year.

Results of the study are available on the ArXiv preprint server: https://arxiv.org/abs/1903.05714


Source: UC San Diego

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire