UC San Diego’s Jupyterhub Platform Aids Students with Data-Intensive Computing Needs

January 24, 2022

Jan. 24, 2022 — In classic UC San Diego fashion, an overheard conversation at a campus coffee cart has turned into an interdisciplinary project that’s making computing-intensive coursework more exciting while saving well over one million dollars so far. The effort gives UC San Diego graduate and undergraduate students – and their professors – better hardware and software ecosystems for exploring real-world, data-intensive and computing-intensive projects and problems in their courses.

Larry Smarr, Distinguished Professor Emeritus, Department of Computer Science and Engineering at the UC San Diego Jacobs School of Engineering.

It all started while UC San Diego computer science and engineering professor Larry Smarr was waiting for coffee in the “Bear” courtyard at the Jacobs School of Engineering a little more than three years ago. In line, Smarr overheard a student say, “I can’t get a job interview if I haven’t run TensorFlow on a GPU on a real problem.”

While this one student’s conundrum may sound extremely technical and highly specific, Smarr heard a general need; and he saw an opportunity. In particular, Smarr realized that innovations coming out of a U.S. National Science Foundation (NSF) funded research project he leads—the Pacific Research Platform (PRP)—could be leveraged to create better computing infrastructure for university courses that rely heavily on machine learning, data visualizations, and other topics that require significant computer resources. This infrastructure would make it easier for professors to offer courses that challenge students to solve real-world data- and computation-intensive problems, including things like what he heard at the coffee cart: running TensorFlow on a GPU on a real problem.

Fast forward to 2022, and Smarr’s spark of an idea has grown into a cross-campus collaboration called the UC San Diego Data Science/Machine Learning Platform or the UC San Diego JupyterHub. Through this platform, the inexpensive, high-performance computational building blocks combining hardware and software that Smarr and his PRP collaborators designed for use in computation-intensive research across the country are now also the backbone of dynamic computing ecosystems for UC San Diego students and professors who use machine learning, data visualization, and other computing- and data- intensive tools in their courses. The Platform has been widely used in every Division on campus, with courses taught in biological sciences, cognitive science, computer science, data science, engineering, health sciences, marine sciences, medicine, music, physical sciences, public health and more. See a list of Jacobs School affiliated faculty and the names of the courses they have taught using the UC San Diego Data Science/Machine Learning Platform.

It’s a unique, collaborative project that leverages Federally funded computing research innovations for classroom use. To make the jump from research to classroom applications, a creative and hardworking interdisciplinary team at UC San Diego came together. UC San Diego’s IT Services / Academic Technology Services stepped up in a big way. Senior architect Adam Tilghman and chief programmer David Andersen led the implementation effort, with leadership and funding support from UC San Diego CIO Vince Kellen and Academic Technology Senior Director Valerie Polichar. The project has already helped the campus avoid well over one million dollars in cloud-computing spend, according to Kellen.

Usage patterns for the UC San Diego Data Science/Machine Learning Platform. The green regions represent available capacity for non-coursework use.
Examples of the software that students are able to run on the UC San Diego Data Science/Machine Learning Platform.

At the same time, the project gives the UC San Diego community tools to encourage the back-and-forth flow of students and ideas between classroom projects and follow-on research projects.

“Our students are getting access to the same level of compte capacity that normally only a researcher using an advanced system like a supercomputer would get. The students are exploring much more complex data problems because they can,” said Smarr, who was also the founding Director of the California Institute for Telecommunications and Information Technology (Calit2), a UC San Diego / UC Irvine partnership.

Personal genomics

One of the many professors from all across campus using the UC San Diego Data Science / Machine Learning Platform for courses is Melissa Gymrek, who is a professor in both the Department of Computer Science and Engineering and the Department of Medicine’s Division of Genetics.

Her students write and run code in a software environment called Jupyter Notebooks that runs on the UC San Diego platform. “They can write code in the notebook and press execute and see the results. They can build figures to visualize data. We focus a lot more now on data visualizations,” said Gymrek.

Xuan Zhang (UC San Diego Chemistry PhD, ’21) is one of the tens of thousands of UC San Diego students and young researchers who has used the UC San Diego Data Science/Machine Learning Platform extensively in courses.

One of the thousands of UC San Diego students who has used the platform extensively is Xuan Zhang. Through the data- and visualization- intensive coursework in CSE 284, Zhang realized that the higher order genetic structures at the center of her chemistry Ph.D. dissertation – R-Loops – could be regulated by the short tandem repeats (STRs) that are at the center of much of the research in Gymrek’s lab. Without the computing-infrastructure for real-world coursework problems, Zhang believes she would not have made the research connection.

After taking Gymrek’s course, Zhang also realized that she could apply to obtain her own independent research profile on the UC San Diego Data Science / Machine Learning Platform in order to retain access to all her coursework and to keep building on it. (When Jupyter Notebooks are hosted on the commercial cloud, students generally lose access to their data-intensive coursework when the class ends, unless they download the data themselves.)

“I thought it was just for the course, but then I realized that Jupyter Notebooks are available for research, without losing access through the UC San Diego Jupyterhub,” said Zhang.

This educational infrastructure has added benefits for professors as well.

“With these Jupyter Notebooks, you can automatically embed the grading system. It saves a lot of work,” said Gymrek. You can designate how many points a student gets if they get the code right, she explained. Before using this system, students sent PDFs of their problem sets which made grading more time intensive. “It was hard to go past a dozen students. Now, you can scale,” said Gymrek. In fact, she has been able to expand access to her personal genomics graduate class to more than 50 students, up from a dozen before she had access to these new tools.

Direct uploading of assignments and grades to the campus learning management system, Canvas, is also now available.

“The platform is truly transforming education. Unlike many learning technology innovations, classes in every division at UC San Diego have used the Data Science/Machine Learning Platform. Many thousands of students use it every year. It’s innovation with real impact, preparing our students in many — sometimes unexpected — fields to be leaders and innovators when they graduate,” said Polichar.

Professors and students from all six departments at the UC San Diego Jacobs School of Engineering are making great use of the UC San Diego Data Science/Machine Learning Platform. The numbers on each stacked bar represent the number of students in that Department using the DSMLP in that quarter.
Courses from all six departments at the UC San Diego Jacobs School of Engineering are run on the UC San Diego Data Science/Machine Learning Platform.
This graph shows courses in all discipines. The numbers in the bars are the number of courses that quarter and the colors show the campus divisions (HDSI is the UCSD Halıcıoğlu Data Science Institute) which used the UCSD DSMLP. This shows how JupyterHub is bringing data science and machine learning computing to a broad set of disciplines.

Commodity hardware for research and education

“If you build your distributed supercomputer, like the PRP, on commodity hardware then you can ride Moore’s Law,” explained Smarr.

UC San Diego ITS senior architect Adam Tilghman poses with some of the innovative computing hardware that has opened the door to more data-intensive and computing-intensive coursework for UC San Diego students. These PCs run a wide range of leading-edge software to help students program the system, record their results in Jupyter notebooks, and execute a variety of data analytic and machine learning algorithms on their problems.

Following this commodity hardware strategy, Smarr and his PRP collaborators developed hardware designs where performance goes up while prices go down over time. The computational building blocks developed by the PRP, that were repurposed by UC San Diego’s ITS, are rack-mounted PCs, containing multi-core CPUs, eight Graphics Processing Units (GPUs), and optimized for data-intensive projects, including accelerating machine learning on the GPUs. These PCs run a wide range of leading-edge software to help students program the system, record their results in Jupyter Notebooks, and to execute a variety of data analytic and machine learning algorithms on their problems.

Building on this commodity hardware approach to high performance computing has allowed UC San Diego to build a dynamic and innovative “on premises” ecosystem for data- and computing- intensive coursework, rather than relying solely on commercial cloud computing services.

“The commercial cloud doesn’t provide an ecosystem that gives students the same platform from course to course, or the same platform they have in their courses as they have in their research,” said Tilghman. “This is especially true in the graduate area where students are starting work in a course context and then they continue that work in their research. It’s that continuity, even starting as a lower division undergraduate, all the way up. I think that’s one of the innovative advantages that we give at UC San Diego.”

UC San Diego professors and students interested in learning more about the Data Science / Machine Learning Platform can find additional details and contact information on their website.

“I’ve been at this for 50 years,” said Smarr. “I don’t know of many examples where I’ve seen such a close linking of research and education all the way around, in a circle.”

This alignment of research and education feeds into UC San Diego’s culture of innovation and relevance.

“It’s essential for the nation that students all across campus learn and work on computing infrastructure that is relevant for their future, whether it’s in industry, academia or the public sector,” said Albert P. Pisano, dean of the UC San Diego Jacobs School of Engineering. “These information technology ecosystems being created and deployed on campus are critical for empowering our students to leverage innovations to serve society.”

Pacific Research Platform

Click here for a video that gives an overview of the Pacific Research Platform (PRP) and includes a sampling of research projects the platform has enabled.

Larry Smarr serves as Principal Investigator on the PRP and allied grants (NSF Awards OAC-1541349, OAC-1826967, CNS-1730158, CNS-2100237) which are administered through the Qualcomm Institute, which is the UC San Diego Division of Calit2.


Source: Daniel Kane, UC San Diego

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, suggest ideas, and even draft code. However, despite these impress Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing concerns about the availability of resources—a challenge remin Read more…

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after an abysmal second-quarter earnings report with critics calli Read more…

AI Helps Researchers Discover Catalyst for Green Hydrogen Production

September 16, 2024

Researchers from the University of Toronto have used AI to generate a “recipe” for an exciting new catalyst needed to produce green hydrogen fuel. As the effects of climate change begin to become more apparent in our Read more…

The Three Laws of Robotics and the Future

September 14, 2024

Isaac Asimov's Three Laws of Robotics have captivated imaginations for decades, providing a blueprint for ethical AI long before it became a reality. First introduced in his 1942 short story "Runaround" from the "I, R Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qubits on an H1 system to simulate an iron catalyst's low ener Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

The Three Laws of Robotics and the Future

September 14, 2024

Isaac Asimov's Three Laws of Robotics have captivated imaginations for decades, providing a blueprint for ethical AI long before it became a reality. First i Read more…

GenAI: It’s Not the GPUs, It’s the Storage

September 12, 2024

A recent news release from Data storage company WEKA and S&P Global Market Intelligence unveiled the findings of their second annual Global Trends in AI rep Read more…

Shutterstock 793611091

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary tech Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

AWS’s High-performance Computing Unit Has a New Boss

September 10, 2024

Amazon Web Services (AWS) has a new leader to run its high-performance computing GTM operations. Thierry Pellegrino, who is well-known in the HPC community, has Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Leading Solution Providers

Contributors

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire