UChicago Scientists to Lead $10 Million NSF ‘Expedition’ for Practical Quantum Computing

February 27, 2018

Feb. 27 — University of Chicago computer scientists will lead a $10 million “expedition” into the burgeoning field of quantum computing, bringing applications of the nascent technology for computer science, physics, chemistry and other fields at least a decade closer to practical use.

To operate, quantum computers require temperatures near absolute zero, conditions created by a dilution refrigerator. Photo by Nate Earnest/David Schuster Laboratory

Quantum computers harness the unique properties of quantum physics in machines that scientists hope will eventually perform complex calculations that are prohibitively slow or even impossible for today’s computers. In recent months, companies such as IBM, Intel and Google have unveiled new quantum computing prototypes approaching 50 quantum bits—or “qubits”—a new milestone in the race for machines capable of producing unprecedented discoveries.

Yet despite these advances, there remains a wide gap between the quantum designs currently in use and the algorithms necessary to make full use of their power. The new, multi-institutional Enabling Practical-Scale Quantum Computing project, funded by the National Science Foundation’s Expeditions in Computing program, will bridge this gap through the co-design of hardware and software that helps scientists realize the potential of quantum computing more rapidly. Expeditions are the largest single-project investments made by the NSF and represent the most visionary and high-impact research in computer science.

“We want to close the gap enough that we can do something promising with these machines,” said Fred Chong, the Seymour Goodman Professor in the Department of Computer Science at the University of Chicago and lead investigator on the project. “What we aim to do is to make quantum algorithms and machines meet, in a useful way, 10 or more years earlier than they would otherwise—five years from now instead of 15 years from now.”

Uniting experts in algorithms, software, computer architecture and education from UChicago, MIT, Princeton, Georgia Tech and the University of California, Santa Barbara, EPiQC will develop these elements in tandem to take full advantage of new quantum machines. The collaboration will also establish a community of academic and industry partners and create new educational programs for students from elementary school to graduate school, training the next generation of quantum computer scientists.

“Without a coordinated effort such as EPiQC, what’s going to happen is these computers will come out and no one will be able to program them, and they’ll need a much larger machine in order to do the computation that they want to do,” said Diana Franklin, director of computer science education at UChicago STEM Education and a research associate professor at UChicago. “It makes it so that practical quantum computers can be released so much earlier than they would be otherwise.”

Missing pieces in quantum computing

The promise of quantum computing lies in the ability of qubits to occupy a “superposition” of states, rather than the binary 1 or 0 of classical computing bits. Due to this difference, each additional qubit doubles the computing power of a machine, producing exponential gains that could eventually push quantum computers past the capabilities of today’s largest supercomputers. Scientists could then use these machines to run simulations and solve equations too complex for classical computers, leading to new discoveries in drug and material design, agriculture, cryptography and transportation optimization.

However, many of the algorithms designed thus far to exploit these quantum advantages require the use of much more powerful machines than will be available in the near future. Scientists also lack the software needed to adapt these algorithms for practical use on actual machines, as well as the infrastructure tools necessary for programming these new technologies.

“The big missing piece in quantum computing is what can we do with it that’s useful,” Chong said. “We want to think about it in very practical terms. What happens when you have a small number of devices, you can only run them for a short amount of time, and you have noise and errors—will the algorithms work then, and how can we change them to make them work better? And how can we change the machine to make the algorithms work better?”

The project’s education and outreach efforts will focus on exposing students of all ages to quantum concepts and principles, preparing them for the new approaches needed to program and use quantum computers. The collaboration also will engage partners from industry and other universities to form a consortium that can share research ideas and new tools as they are developed.

“EPiQC will play an essential role in researching efficient co-design of algorithms, software and devices, as well as creating tools to put quantum in front of a wider audience for even greater quantum programming creativity, and eventual breakthrough quantum applications,” said Jay Gambetta, manager of quantum information and computation at IBM Research. “EPiQC will also develop curricula to help train a much-needed workforce to drive quantum computing forward.”

The EPiQC project will leverage substantial investments by the University of Chicago in computer science, including a major faculty hiring initiative and new facilities for computer and data science. The project also will coordinate with UChicago STEM Education and the Chicago Quantum Exchange, a partnership of UChicago, Argonne National Laboratory and Fermi National Laboratory for advancing academic and industrial efforts in the science and engineering of quantum information. Additional UChicago faculty on the project include John Reppy, professor in the Department of Computer Science; and David Schuster, assistant professor in the Department of Physics.

“Part of what we want to do is not only produce tools and educate people and help the community grow, but also help people appreciate that there are some really important problems to be solved here, and inspire people to work on them,” Chong said. “It’s really one of our core missions to build a research community with enough critical mass to spur innovation and realize the potential of this incredibly promising computing technology.”


Source: Rob Mitchum, University of Chicago

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire