UD’s Sunita Chandrasekaran Receives NSF Grant to Create Powerful Software Framework

October 10, 2018

Oct. 10, 2018 — The world’s fastest supercomputer can now perform 200,000 trillion calculations per second, and several companies and government agencies around the world are competing to build a machine that will have the computer power to simulate networks on the scale of the human brain. This extremely powerful hardware requires extremely powerful software, so existing software code must be continually updated to keep up.

Sunita Chandrasekaran, an assistant professor of computer and information sciences at the University of Delaware, is perfectly suited for this challenge. Under a new grant from the National Science Foundation, she is designing frameworks to adapt code to increasingly powerful systems. She is working with complex patterns known as wavefronts, which are commonly found in scientific codes used in analyzing the flow of neutrons in a nuclear reactor, extracting patterns from biomedical data or predicting atmospheric patterns.

Chandrasekaran is an expert on parallel programming — writing software code that can run simultaneously on many multi-core processors. Parallel programming is an increasingly important discipline within computer science as more and more universities and companies use powerful supercomputers to analyze wide swaths of data, from scientific results to consumer behavior insights and more.

Chandrasekaran is looking at scientific applications to see how they were written, how they have been performing on outdated architectures, what kind of programming models have been used, and what challenges have arisen.

“Most of the time the programming models are created in a broad stroke,” she said. “Because they are generalized to address a large pool of commonly found parallel patterns, often the models miss creating features for some complex parallel patterns, such as wavefronts, that are hidden in some scientific applications.”

A wavefront allows for the analysis of patterns in fewer steps. The question is: How do you get the programming model to do that?

One such example is Minisweep, a miniapp that models scenarios within a nuclear reactor by “sweeping” across a grid with squares that represent points in space and are used to calculate the positions, energies, and flows of neutrons. This parent application to Minisweep is used to reduce the odds of a meltdown and to safeguard engineers who work around the nuclear reactor from radiation exposure. Earlier this year, Chandrasekaran and doctoral student Robert Searlesdemonstrated how they modified the miniapp to perform 85.06 times faster than code that was not parallelized. This work was recently presented in the premier Platform for Advanced Scientific Computing (PASC) 2018 conference and published by the Association for Computing Machinery (ACM).

“We wondered: Is this pattern specific to Minisweep?,” she said. “Or is it going to exist in other codes? Are there other codes that could benefit if I were to put this type of pattern in a programming model and create an implementation and evaluate it?”

For example, Chandrasekaran discovered that some algorithms in bioinformatics, the study of large sets of biological data, contained similar patterns. She suspects that by adapting the software written for Minisweep, she can make great strides toward improving the code. She will try this with data from Erez Lieberman Aiden, assistant professor of molecular and human genetics at Baylor College of Medicine and assistant professor of computer science at Rice University. Chandrasekaran met Aiden when he visited UD to give a talk titled “Parallel Processing of the Genomes, by the Genomes and for the Genomes.”

Chandrasekaran was inspired by Aiden’s work with DNA sequences. He uses a computing tool to find long-range interactions between any two elements on the same chromosome, in turn showing the genetic basis of diseases. Chandrasekaran suspected that she could utilize existing patterns and update the code, allowing for faster analysis of this important biological data.

“The goal is not to simply create a software tool,” she said. “The goal is to build real-life case studies where what I create will matter in terms of making science easy.”

Directive-based parallel programming models such as OpenACCand OpenMP will be explored to do this.

Chandrasekaran aims to maintain performance and portability as she redesigns algorithms. She will also keep the scientists who use the algorithms in mind.

“You can’t create a programming model by only looking at the application or only looking at the architecture,” she said. “There has to be some balance.”

This project will benefit scientific application developers who are not necessarily computer scientists. “They can concentrate more on the science and less on the software,” said Chandrasekaran. Scientists come to her with data sets and problems that take hours, days, sometimes months to compute, and she figures out how to make them run faster, thus enabling newer science.

Chandrasekaran will analyze data supplied by Aiden at Baylor and physicists at Oak Ridge National Lab. Searles will also work on the project, and Chandrasekaran is looking for an additional graduate student with an aptitude for parallel programming to help with this project.


Source: Julie Stewart, University of Delaware

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and h Read more…

By Doug Black

AWS to Offer Nvidia’s T4 GPUs for AI Inferencing

March 19, 2019

The AI inference market is booming, prompting well-known hyperscaler and Nvidia partner Amazon Web Services to offer a new cloud instance that addresses the growing cost of scaling inference. The new “G4” instances... Read more…

By George Leopold

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiology. Clara, you may recall, is Nvidia’s biomedical platform Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Spark That Ignited A New World of Real-Time Analytics

High Performance Computing has always been about Big Data. It’s not uncommon for research datasets to contain millions of files and many terabytes, even petabytes of data, or more. Read more…

DARPA, NSF Seek Real-Time ML Processor

March 18, 2019

A new U.S. research initiative seeks to develop a processor capable of real-time learning while operating with the “efficiency of the human brain.” The National Science Foundation (NSF) and the Defense Advanced Research Projects Agency jointly announced a “Real Time Machine Learning” project on March 15 soliciting industry proposals for “foundational breakthroughs” in hardware required to “build systems that respond and adapt in real time.” Read more…

By George Leopold

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This