UD’s Sunita Chandrasekaran Receives NSF Grant to Create Powerful Software Framework

October 10, 2018

Oct. 10, 2018 — The world’s fastest supercomputer can now perform 200,000 trillion calculations per second, and several companies and government agencies around the world are competing to build a machine that will have the computer power to simulate networks on the scale of the human brain. This extremely powerful hardware requires extremely powerful software, so existing software code must be continually updated to keep up.

Sunita Chandrasekaran, an assistant professor of computer and information sciences at the University of Delaware, is perfectly suited for this challenge. Under a new grant from the National Science Foundation, she is designing frameworks to adapt code to increasingly powerful systems. She is working with complex patterns known as wavefronts, which are commonly found in scientific codes used in analyzing the flow of neutrons in a nuclear reactor, extracting patterns from biomedical data or predicting atmospheric patterns.

Chandrasekaran is an expert on parallel programming — writing software code that can run simultaneously on many multi-core processors. Parallel programming is an increasingly important discipline within computer science as more and more universities and companies use powerful supercomputers to analyze wide swaths of data, from scientific results to consumer behavior insights and more.

Chandrasekaran is looking at scientific applications to see how they were written, how they have been performing on outdated architectures, what kind of programming models have been used, and what challenges have arisen.

“Most of the time the programming models are created in a broad stroke,” she said. “Because they are generalized to address a large pool of commonly found parallel patterns, often the models miss creating features for some complex parallel patterns, such as wavefronts, that are hidden in some scientific applications.”

A wavefront allows for the analysis of patterns in fewer steps. The question is: How do you get the programming model to do that?

One such example is Minisweep, a miniapp that models scenarios within a nuclear reactor by “sweeping” across a grid with squares that represent points in space and are used to calculate the positions, energies, and flows of neutrons. This parent application to Minisweep is used to reduce the odds of a meltdown and to safeguard engineers who work around the nuclear reactor from radiation exposure. Earlier this year, Chandrasekaran and doctoral student Robert Searlesdemonstrated how they modified the miniapp to perform 85.06 times faster than code that was not parallelized. This work was recently presented in the premier Platform for Advanced Scientific Computing (PASC) 2018 conference and published by the Association for Computing Machinery (ACM).

“We wondered: Is this pattern specific to Minisweep?,” she said. “Or is it going to exist in other codes? Are there other codes that could benefit if I were to put this type of pattern in a programming model and create an implementation and evaluate it?”

For example, Chandrasekaran discovered that some algorithms in bioinformatics, the study of large sets of biological data, contained similar patterns. She suspects that by adapting the software written for Minisweep, she can make great strides toward improving the code. She will try this with data from Erez Lieberman Aiden, assistant professor of molecular and human genetics at Baylor College of Medicine and assistant professor of computer science at Rice University. Chandrasekaran met Aiden when he visited UD to give a talk titled “Parallel Processing of the Genomes, by the Genomes and for the Genomes.”

Chandrasekaran was inspired by Aiden’s work with DNA sequences. He uses a computing tool to find long-range interactions between any two elements on the same chromosome, in turn showing the genetic basis of diseases. Chandrasekaran suspected that she could utilize existing patterns and update the code, allowing for faster analysis of this important biological data.

“The goal is not to simply create a software tool,” she said. “The goal is to build real-life case studies where what I create will matter in terms of making science easy.”

Directive-based parallel programming models such as OpenACCand OpenMP will be explored to do this.

Chandrasekaran aims to maintain performance and portability as she redesigns algorithms. She will also keep the scientists who use the algorithms in mind.

“You can’t create a programming model by only looking at the application or only looking at the architecture,” she said. “There has to be some balance.”

This project will benefit scientific application developers who are not necessarily computer scientists. “They can concentrate more on the science and less on the software,” said Chandrasekaran. Scientists come to her with data sets and problems that take hours, days, sometimes months to compute, and she figures out how to make them run faster, thus enabling newer science.

Chandrasekaran will analyze data supplied by Aiden at Baylor and physicists at Oak Ridge National Lab. Searles will also work on the project, and Chandrasekaran is looking for an additional graduate student with an aptitude for parallel programming to help with this project.


Source: Julie Stewart, University of Delaware

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire