University of Potsdam Researchers Utilize Supercomputers to Understand Binary Neutron Star Mergers

January 24, 2023

With the help of new observational data of gravitational waves and electromagnetic signatures, University of Potsdam researchers are using supercomputers to understand binary neutron star mergers.

Jan. 24, 2023 — In 2015, astrophysicists, astronomers, and astrophiles celebrated an exciting development. For roughly 100 years, researchers had hypothesized the existence of gravitational waves — waves of gravity in space-time caused by large, violent events in the cosmos such as supernovas or neutron star mergers — but had never seen direct evidence confirming their existence. When the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States definitively detected a gravitational wave event, researchers set out to build on this finding to advance astrophysics research.

Simulation of a neutron-star–black-hole coalescence in which the neutron star is tidally disrupted during the merger. Credit: T. Dietrich (Potsdam University and Max Planck Institute for Gravitational Physics), N. Fischer, S. Ossokine, H. Pfeiffer (Max Planck Institute for Gravitational Physics), S.V.Chaurasia (Stockholm University), T. Vu.

“Since 2015, we’ve seen about 100 gravitational wave events. This kind of research is extremely new, and it has a huge potential for additional inputs that we can’t currently get through other observations,” said Prof. Tim Dietrich, researcher at the University of Potsdam. Since that time, Dietrich and his research group have been using high-performance computing (HPC) resources to simulate cosmic phenomena that produce gravitational waves. Specifically, the team has been using the High-Performance Computing Center Stuttgart’s (HLRS’s) Hawk supercomputer to simulate what happens when binary neutron stars collide. Over the last three years, the team has made significant strides modelling these complex celestial events in unprecedented detail, and simulations on Hawk have contributed to more than a dozen scientific journal articles in the process, including publications in the leading journals Nature and Science.

Come Together

Neutron stars are essentially the fossil relics of massive stars that have reached their ends. When stars run out of fuel, they start to collapse before their outer layers expand explosively outward in a supernova. These massive events not only produce gravitational waves, but also project heavy elements and other materials across the universe. The remaining material cools (relatively speaking) to a brisk 1,000 degrees Celsius and further consolidates, becoming an ultra-dense neutron star. (The name comes from the fact that after a supernova, heavy neutrons comprise the bulk of the remaining materials.) If two of these objects drift too close to one another, strong gravitational pull causes them to merge, forming a much larger neutron star or creating a black hole in the process.

Astrophysicists can detect neutron star mergers through their observational signatures, such as gravitational waves. To complement these methods, scientists also simulate these events using supercomputers. This makes it possible to understand at a fundamental level how these events produce gravitational waves and electromagnetic signals, and eject materials across the universe.

To do that, though, researchers need to have a reliable model that can accurately represent the complex physics interactions taking place at a wide variety of scales within these massive systems. This requires world-leading HPC resources, and even today’s most powerful machines cannot completely simulate these events from first principles. For Dietrich and his collaborators, this has meant finding ways to improve computational efficiency without sacrificing realistic physics in their simulations.

For the team, simulating neutron star mergers realistically means including so-called multi-messenger physics information. As the name implies, multi-messenger physics collates information describing multiple physical phenomena to get a more comprehensive picture of materials’ behaviors at a fundamental level. Measurements of features including photons (light), a mysterious class of elementary particles called neutrinos, high-energy cosmic rays, and gravitational waves provide valuable, detailed information for researchers at both small and large scales, but are very difficult to integrate into a single simulation that accurately represents the entire system. “We need to perform 5,000 operations for the evolution of a single point in our computational grid,” said Anna Neuweiler, a PhD candidate in Dietrich’s group and collaborator on the project. “Of course, our grid is comprised of many points, so for even just one time evolution, we need a lot of capacity to compute and solve our equations.”

Simulation of two merging neutron stars, each with a mass of 1.35 solar masses. From red to blue, increasing densities are shown. Credit: T. Dietrich, Potsdam University and Max Planck Institute for Gravitational Physics.

Using Hawk, the team has been able to get closer to an accurate simulation of neutron star mergers based on first principles by selectively lowering the resolution of portions of its simulation that are less pertinent to the research. In addition, the researchers compare multi-messenger physics data in their simulations with complementary heavy-ion collision experiments being run at specialized experimental facilities on Earth. This combined approach has enabled the team both to advance the state of the art in researching binary neutron star mergers and to create a reliable application that they hope to enrich with even more first-principles physics calculations in the years to come. While the team has run larger simulations on other systems, access to Hawk laid the foundations for their successful simulation approach in the recent past.

“I don’t point to one big accomplishment in our work, because all these developments aim at getting a better understanding of the physics. This means that even simulations that move incrementally are still necessary, and might become even more important down the line. It is more like a marathon than a sprint,” Dietrich said.

Turbulence Ahead

Having successfully improved its code’s computational efficiency, the team is now focused on ways to include even more detail in its simulations. As part of her PhD research, Neuweiler has begun including first-principles magnetic field calculations in the team’s code, leading to a significant increase in computational demands. “Understanding the role that magnetic fields play is mostly important for simulating what happens after neutron stars merge so that we have a more accurate description of how matter flows,” she said. “We would like to gain a more accurate description, and in principle we have additional equations and variables that we can use, but it will be more computationally expensive than what we are currently doing.”

Dietrich also indicated that in the future the team would like to include accurate descriptions of turbulence at the smallest scales of their simulations, as well as details about neutrino physics that are becoming available as astrophysicists learn more about these mysterious particles. Researchers are also looking forward to the next predicted binary neutron star merger observation run in the May, 2023, and another one in 2026. With each new event the team will gain access to valuable observational data, enabling them to refine their simulations further. “There will be a lot of instances where we can use our simulations to interpret things better, and we need the resources to do the analysis of the computational data,” Dietrich said. “So, one thing is for sure—we will definitely not be asking for less computational time moving forward.”


Source: Eric Gedenk, High-Performance Computing Center Stuttgart (HLRS)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire